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Abstract

An important question in modal nonmonotonic logics concerns the limits of
propositional definability for logics of the McDermott-Doyle family. Inspired by
this technical question we define a variant of autoepistemic logic which provably
corresponds to the logic of the McDermott-Doyle family that is based on the
modal axiom p5 : 3ϕ ⊃ (¬2ϕ ⊃ 2¬2ϕ). This axiom is a natural weakening of
classical negative introspection restricting its scope to possible facts. It closely re-
sembles the axiom w5 : ϕ ⊃ (¬2ϕ ⊃ 2¬2ϕ) which restricts the effect of negative
introspection to true facts. We examine p5 in the context of classical possible-
worlds Kripke models, providing results for correspondence, completeness and the
finite model property. We also identify the corresponding condition for p5 in the
context of neighbourhood semantics. Although rather natural epistemically, this
axiom has not been investigated in classical modal epistemic reasoning, probably
because its addition to S4 gives the well-known strong modal system S5.



1 Motivation

Research in nonmonotonic reasoning has provided new paradigms for the use of modal-
ity in epistemic reasoning. Through the extensive investigation of the McDermott-Doyle
family of modal nonmonotonic logics, the notion of subnormal modal logics (logics with-
out axiom K : 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ), containing propositional logic and closed under
rule of necessitation) has emerged; it has shown up first in [MT90] and further explored
in [FMT92, ST93]. Axioms like F : 3ϕ ∧ 32ψ ⊃ 2(3ϕ ∨ ψ) which have no obvious
epistemic interpretation (although F has been examined from the epistemic viewpoint
in the context of S4 + F [Voo93]) seem to be very important for nonmonotonic epis-
temic reasoning [ST94]. On the other hand, the family of autoepistemic logics invented
in [Moo85] and thoroughly investigated afterwards [Kon93, MT91], introduce another
paradigm of epistemic reasoning, treating modality without appealing to modal logic
itself. A major argument in favour of autoepistemic logics is their clear reference to
self-provability and a well motivated semantics.

The McDermott-Doyle [MD80, McD82] family of modal nonmonotonic logics is de-
fined through the following fixpoint equation, parameterized by a monotonic modal logic
Λ: assuming an initial epistemic theory I of an intelligent agent, an epistemic theory T
is called a Λ-expansion of I iff T is consistent with Λ and satisfies

T = CnΛ(I ∪ {¬2ϕ | ϕ /∈ T})
The provability operator CnΛ(S) of this equation is a strong one, in that it allows
applications to members of the theory S, not only to Λ-theorems [MT93]. Assuming a
different monotonic logic Λ, we obtain a different notion of expansion, that is, a different
nonmonotonic logic. For more details (practically everything we know about this family)
see [MT93].

The McDermott-Doyle extends in a certain way the modal epistemic reasoning in
the nonmonotonic setting. The deficiencies initially traced in this framework, led to the
discovery of autoepistemic logic [Moo85] and its many variants. This was a new idea
on epistemic reasoning, one that originated directly from the world of Knowledge Rep-
resentation in AI. In this framework, the reasoning is conducted in purely propositional
terms: assuming a propositional modal language, keeping the proof theory of propo-
sitional logic, altering its semantics and introducing a fixpoint equation. The latter
equation, reproduced below, incorporates the idea (firstly introduced in the stable sets
of R. Stalnaker [Sta93]) of (i) positive introspection, in terms of an operator which adds
2ϕ to the epistemic theory T , whenever ϕ ∈ T and (ii) negative introspection, adding
¬2ϕ whenever ϕ /∈ T . A stable expansion of theory I is a solution of the fixpoint
equation

T = Cn(I ∪ {2ϕ | ϕ ∈ T} ∪ {¬2ϕ | ϕ /∈ T})
Note that (iii) T is closed under propositional provability, as Cn represents the con-
sequence operator of propositional calculus. The negative introspection part seems so
perfectly natural that has been left intact in practically every variant of this logic.
Nonetheless, different propositionally defined epistemic logics with a similar flavor have
been defined by altering the positive introspection fragment of this equation. By as-
suming a positive introspection operator of the form {ϕ ⊃ 2ϕ | ϕ ∈ T} we obtain the

1



strict expansions of [MT90], while by assuming {ϕ ≡ 2ϕ | ϕ ∈ T} instead, we obtain
the reflexive expansions of [Sch92].

All these notions of autoepistemic reasoning are captured by the McDermott-Doyle
proposal [MT93]; the first result of this stream was announced by Schwarz in [Shv90]. In
a seminal result generalizing and coding all previous results in the area, Marek, Schwarz
and Truszczyński proved that there exist whole intervals in the lattice of (monotonic)
modal logics that generate the same nonmonotonic logic and capture the logics men-
tioned above [MST93]. Succintly presented: the nonmonotonic McDermott-Doyle coun-
terparts of every logic Λ in 5 – KD45 captures Moore’s autoepistemic logic, every logic
Λ in Tw5 – Sw5 captures Schwarz’s reflexive expansions, every logic Λ in w5 – D4w5
captures strict expansions, every logic Λ in N – WK captures N-expansions1.

It is a very interesting phenomenon that some logics of the McDermott-Doyle family
can be written in the form of autoepistemic logic. The limits of this phenomenon is a
major open issue and actually the motivating question for the results of this research
note: “The fact that these nonmonotonic logics can be defined without any reference to
any modal system by a simple modification of the semantics of propositional calculus
is an important advantage. It seems to be a challenging open problem, with poten-
tially far-reaching consequences, to decide whether any other nonmonotonic logic in the
McDermott-Doyle family admits similar characterization.” [MT93, p.315]

The statement of this problem leads to a kind of reverse logical engineering. We
define a variant of autoepistemic logic, which introduces a new modal axiom, namely one
that allows us to characterize it in terms of the McDermott-Doyle definition. Our main
concern is purely technical. The whole approach is entirely taken from the logician’s
viewpoint and we will not be concerned with the value of the logics for Knowledge
Representation applications. In this investigation, we come up with a variant of axiom
5 : 32ϕ ⊃ 2ϕ (equivalently, ¬2ϕ ⊃ 2¬2ϕ), the axiom of negative introspection. The
axiom 5 states that the reasoner knows that s/he does not know a certain fact. The
axiom w5 : ϕ ⊃ (32ϕ ⊃ 2ϕ) (equivalently, (ϕ ∧ ¬2ϕ) ⊃ 2¬2ϕ) restricts the effect
of negative introspection to true facts. The latter axiom has been examined both in
classical modal logic [Seg71] (under the name R) and in modal nonmonotonic reasoning
[Sch92, Sch95]. Here, we introduce and examine the axiom

p5 : 3ϕ ⊃ (32ϕ ⊃ 2ϕ)

which restricts the effect of negative introspection to possible facts. We have chosen to
name it p5 (possibly 5), in symmetry to the name of w5 (weak 5). Equivalent forms
of this axiom schema comprise

• 3ϕ ⊃ (¬2ϕ ⊃ 2¬2ϕ): if something is possible and I do not know it, I know that
I do not know it

1To keep the length of this note proportional to its contribution, we will not provide definitions for
every notion mentioned. We will assume that the reader is acquainted with the notation and terminology
of classical modal logic and modal nonmonotonic reasoning. Again, [BdRV01, MT93] can be consulted
for details. At this point let us only mention that logic N is the pure logic of necessitation, a modal
logic incorporating propositional calculus, possessing the rule of generalization (rule of necessitation)
but without any axiom for modalities [FMT92]. This ‘strange’ logic is definitely an import of Artificial
Intelligence to Modal Logic, a prime example of the so-called subnormal modal logics.
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• (3ϕ ∧ 3¬ϕ) ⊃ 2¬2ϕ, (3ϕ ∧ 3¬ϕ) ⊃ 2¬2¬ϕ: if everything is possible I know
that I do not know anything about it.

Axiom p5 seems to embody an interesting notion of negative introspection although,
curiously enough, it has not been examined in the literature of modal epistemic reasoning
[Hin62, Seg71, Len78, Len79, HC96].

This research note advocates in favour of the fact that modal nonmonotonic
logic has conceptually enriched modal logic in a variety of ways. One of these
ways, is that axioms or logics that have been overlooked in classical epistemic
reasoning come into play through a different route. Arguably, this is also the case
with axiom p5, which has not been examined hitherto, although it seems natural. Thus,
the contributions of this paper comprise the investigation of a natural epistemic axiom,
its justification in terms of modal nonmonotonic reasoning and its evaluation in the
context of classical epistemic systems. The latter means basically the extensions of S4,
and in section 5 a plausible partial explanation for the absence of p5 in the literature
is provided.

The structure of this paper is as follows: in Section 2 we exhibit the autoepistemic
logic through which p5 emerges. In Section 3 we examine p5 in the realm of normal
modal logics and relational semantics, providing correspondence, completeness and de-
cidability results. In Section 4 we identify a condition corresponding to p5 in the
broader context of neighbourhood semantics. In Section 5 we discuss its value in the
context of classical epistemic reasoning and finally, we discuss future research in the
concluding Section 6.

A final note on notation: although the 3 operator can be avoided, we will employ
it when discussing p5 in the context of relational models and normal modal logics.
In Section 2 we avoid its usage; in general, one has to be careful when working with
subnormal modal logics, as they are not closed under the equivalence substitution rule
[ST93]. We believe this notational pluralism is harmless and simplifies some proofs in
Section 3.2.

2 Narrow expansions and p5

In this section, we define a variant of autoepistemic logic and embed it in the McDermott-
Doyle family. We remind the reader that we have not aimed in identifying a logic useful
for KR applications; we have just focused on stretching the limits of propositional defin-
ability for McDermott-Doyle logics. To proceed with the definitions, we fix a standard
monomodal language L2, assuming a countably infinite set Φ of propositional variables.
The syntax is given by

ϕ ::= p ∈ Φ | ¬ϕ | ϕ1 ⊃ ϕ2 | 2ϕ

The connectives ∧,∨ are not taken as primitive; when used, they are considered as
shorthand of the equivalent expression involving ¬,⊃. To obtain our propositionally
defined nonmonotonic logic, we modify (in a standard fashion) the classical propositional
semantics.
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Definition 2.1 Let T be a theory in the language L2 and V a valuation of the for-
mulae of L2 which treats 2ϕ as a propositional variable. The valuation V is a narrow
autoepistemic interpretation iff for every formula ϕ in L2:

(i) ϕ ∈ T implies that either V (2¬ϕ) = ⊥ or V (2ϕ) = >
(ii) ϕ /∈ T implies that V (2ϕ) = ⊥

A corresponding notion of narrow T -entailment emerges:

Definition 2.2 Assume a theory I ⊆ L2; for a formula ϕ ∈ L2, I ²n
T ϕ iff for every

narrow autoepistemic T -interpretation such that V (I) = > it holds that V (ϕ) = >. T
is a narrow expansion of I iff it satisfies the model-theoretic fixpoint equation

T = {ϕ | I ²n
T ϕ}

Proposition 2.3 A consistent theory T ⊆ L2 is a narrow autoepistemic expansion of
I iff

T = Cn(I ∪ {¬2¬ϕ ⊃ 2ϕ | ϕ ∈ T} ∪ {¬2ϕ | ϕ /∈ T})2 (2.3.i)

The proof is straightforward and represents just a restatement of the semantic definition.

Fact 2.4 Every consistent solution of the fixpoint equation (2.3.i) is a stable set.

Proof. If T is a solution of (2.3.i) then obviously T is closed under propositional
provability and ϕ /∈ T implies ¬2ϕ ∈ T . For the positive introspection, note that
ϕ ∈ T implies ¬ϕ /∈ T , by consistency. By the former, ¬2¬ϕ ⊃ 2ϕ ∈ T and by the
latter, ¬2¬ϕ ∈ T . By propositional reasoning, 2ϕ ∈ T .

In order to prove that narrow expansions belong to the McDermott-Doyle family, we
need the subnormal modal logic p5, where p5 is the axiom ¬2¬ϕ ⊃ (¬2ϕ ⊃ 2¬2ϕ)
of restricted negative introspection.

Theorem 2.5 A consistent theory T is a p5-expansion of I iff it is a narrow expansion
of I.

2The reader should easily identify the role of the positive introspection operator. In consistent
expansions, it simulates the role of the rule of necessitation: note that ϕ ∈ T implies ¬ϕ /∈ T , and
thus, ¬2¬ϕ ∈ T . This route of introspective reasoning seems to be a bit ‘narrow-minded’ to us; hence
the title for the ‘narrow expansions’. Obviously the term is not well justified as we have not assessed
narrow expansions from the example-driven, AI perspective. From the Modal Logic viewpoint, the
positive introspection operator involved in this equation is reminiscent of the classical modal axiom
of partial functionality Dc : 3ϕ ⊃ 2ϕ, which has been used in dynamic logic to assert deterministic
execution of programs [HKT00]. Its intuitive meaning when examined inside a state s, is: “if ϕ is
true in an alternative state t, then t is the unique alternative to s”. The validity of Dc corresponds to
the partial functionality property: “every world can see at most one possible world, itself or another”
[HC96, Gol92].
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Proof. (⇒) Assume T is a p5-expansion of I. To prove that it is a narrow expansion,
it suffices to show that

T = Cnp5(I ∪ {¬2ϕ | ϕ /∈ T}) ⊆ Cn(I ∪ {¬2¬ϕ ⊃ 2ϕ | ϕ ∈ T} ∪ {¬2ϕ | ϕ /∈ T})
(2.5.i)

The other inclusion is straightforward since T is a stable set. To prove (2.5.i), we observe
that for a stable and consistent theory T the set

S = Cn({¬2¬ϕ ⊃ 2ϕ | ϕ ∈ T} ∪ {¬2ϕ | ϕ /∈ T})
contains every instance of 5: 2ϕ∨2¬2ϕ and thus, a fortiori , every instance of p5 (by
propositional reasoning).

(i) if ϕ ∈ T , by a similar argument as in Fact 2.4, 2ϕ ∈ S.

(ii) if ϕ /∈ T , ¬2ϕ ∈ T . This implies that ¬2¬¬2ϕ ⊃ 2¬2ϕ ∈ S. By the consistency
assumption, 2ϕ /∈ T and thus ¬¬2ϕ /∈ T . Hence, ¬2¬¬2ϕ ∈ S. It follows
propositionally that 2¬2ϕ ∈ S.

By a similar argument as in case (i), it follows that S is closed under the rule of neces-
sitation.

(⇐) Assume T is a narrow expansion of I. It suffices to prove that

{¬2ϕ | ϕ /∈ T} `p5 {¬2¬ϕ ⊃ 2ϕ | ϕ ∈ T} (2.5.ii)

To this end, assume ϕ ∈ T , then 2ϕ ∈ T and ¬2ϕ /∈ T (by stability and consistency).
Thus ¬2¬2ϕ ∈ {¬2ϕ |ϕ /∈ T}. By (a propositionally equivalent variant of) p5:
¬2¬2ϕ ⊃ (¬2¬ϕ ⊃ 2ϕ) and MP, (2.5.ii) follows.

3 Relational semantics, normal modal logics and p5

In the previous section, axiom p5 has emerged, as a basic tool for reconstructing the
positive introspection part of narrow expansions, out of their negative introspection part.
Yet, this axiom has a very natural epistemic interpretation, and is a very close relative
of axiom w5. To the best of our knowledge, this is the very first time this axiom enters
the modal logic literature and thus, it seems worth mentioning its basic characteristics.
From the viewpoint of the technical machinery, p5 is a simple Sahlqvist formula3 and
its analysis is fairly easy. We prove correspondence and canonicity with respect to a
simple condition and then make a short Sahlqvist verification.

Although we assume that the reader is acquainted with the basics of modal logic,
we wish to remind that modalities are interpreted over possible-worlds frames and mod-
els. Aiming to establish notation we reproduce the following definition and refer the
interested reader to [BdRV01] for details.

3The celebrated Sahlqvist theorem identifies a large class of modal formulae which correspond to
first-order conditions over modal frames; see [BdRV01, Sections 3.6 & 3.7] for a detailed presentation.
We follow here the notation and analysis of this book.
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Definition 3.1 A Kripke frame F = 〈W,R〉 for our basic monomodal language L2

consists of a set W of states (possible worlds), equipped with a binary relation R ⊆
W ×W .
A Kripke model M = 〈W,R, V 〉 based on F, includes a valuation V : Φ → P(W )
providing a truth value to every propositional variable inside each possible world. Every
formula of L2 is interpreted locally, inside every state. The classical propositional
connectives are interpreted in the obvious way; 2ϕ is satisfied in the state s of model
M (M, s ° 2ϕ) iff

∀t ∈ W (sRt ⇒ M, t ° ϕ)

Analogously, 3ϕ is satisfied in the state s of model M (M, s ° 3ϕ) iff

∃t ∈ W (sRt ∧M, t ° ϕ)

There exist different levels of truth in modal logic, a fact that makes the study of modal
consequence relations a rich topic. We can speak about truth in a possible world (defined
above), validity in a model (truth in every world of the model) and validity in a frame
(validity in every model built on that frame).

We prove here that p5, semantically and proof-theoretically corresponds to the con-
dition

∀w∀v∀u(
(R(w, v) ∧R(w, u) ∧ v 6= u) ⊃ (R(v, u) ∧R(v, v))

)
(P5)

We wish to remind that axiom 5 : ¬2ϕ ⊃ 2¬2ϕ corresponds to the euclidean property

∀w∀v∀u(
(R(w, v) ∧R(w, u)) ⊃ R(v, u)

)
(Eucl)

while axiom w5 : ϕ ⊃ (¬2ϕ ⊃ 2¬2ϕ) corresponds to the following property

∀w∀v∀u(
(R(w, v) ∧R(w, u) ∧ w 6= v) ⊃ R(u, v)

)
(W5)

The above mentioned properties, although lead to identical situations when imposed on
three different states w 6= v 6= u, are in general different. They are separated by the
following frames:

¢
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t
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(ii)
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Frame (i) is a P5 (but not a Eucl, W5) frame, frame (ii) is a W5 (but not a Eucl, P5)
frame and frame (iii) satisfies all three properties.
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3.1 Kripke Correspondence for p5

We prove here that p5 defines semantically (or corresponds to) the frames satisfying
the property (P5).

Theorem 3.2 Let F = 〈W,R〉 be a Kripke frame for L2. Then, p5 is valid in F iff F

satisfies condition (P5).

Proof. (⇒) It suffices to show that, if (P5) does not hold in F, then for some ϕ ∈ L2,
F 1 3ϕ ⊃ (32ϕ ⊃ 2ϕ). So, since (P5) doesn’t hold, there must exist w, v, u ∈ W such
that wRv, wRu and v 6= u, but ¬vRu or ¬vRv.

• Let ¬vRu be the case and assume p ∈ Φ. Concider the valuation V such that
V (p) = {v} ∪ {z ∈ W | vRz}; in other words p is true in v and in every world v
sees. Now, obviously v witnesses both that 3p and 32p at w: 〈F, V 〉, w ° 3p and
〈F, V 〉, v ° 2p which implies 〈F, V 〉, w ° 32p. But 2p is false at w, since wRu
and 〈F, V 〉, u 1 p (because u 6= v and ¬vRu). So, 〈F, V 〉, w 1 3p ⊃ (32p ⊃ 2p).
It follows that p5 is not valid in F.

• Let ¬vRv be the case. In the same fashion as above, for p ∈ Φ we adopt the
valuation V (p) = {u} ∪ {z ∈ W | vRz}. Now, u witnesses the truth of 3p at w
(since p is true at u and wRu), while v witnesses the truth of 32p at w. Since
v 6= u and ¬vRv, p is false at v and thus 2p is false at w. It follows again that
p5 is not valid in F.

(⇐) Let V be a valuation for F and let w ∈ W be such that 〈F, V 〉, w ° 3p i.e. there
exist v ∈ W such that

wRv and 〈F, V 〉, v ° p (3.2.i)

Assume also, that 〈F, V 〉, w ° 32p i.e. there exist u ∈ W such that

wRu and for all z ∈ W, if uRz, then 〈F, V 〉, z ° p (3.2.ii)

Finally, let x ∈ W be such that wRx.
If x 6= u, then by (P5), uRx and so, by (3.2.ii), 〈F, V 〉, x ° p.
If x = u, then if u = v, (3.2.i) leads us to 〈F, V 〉, x ° p. Otherwise, if u 6= v, then
by (P5), uRu and hence by (3.2.ii), 〈F, V 〉, u ° p or 〈F, V 〉, x ° p. Consequently,
〈F, V 〉, w ° 2p.

Digression: the Sahlqvist identity for p5. Following the notation and analysis of
[BdRV01], it is easy for the reader to check that the universally quantified second-order
transcription of p5 (in the form 3p ⊃ (32p ⊃ 2p)) is

∀P∀x
((
∃x1(R(x, x1) ∧ P (x1)) ∧ ∃x2

(
R(x, x2) ∧ ∀x4(R(x2, x4) ⊃ P (x4))

)) ⊃

∀x3(R(x, x3) ⊃ P (x3))
)

(P5s)
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so that for every frame F

F ° p5 ⇐⇒ F ² (P5s)

Now, using the Sahlqvist algorithm, the following fact can be verified, confirming the
correspondence to condition (P5). The verification is left to the reader.

Fact 3.3 For every Kripke frame F: F ² (P5s) ⇐⇒ F ² (P5)

3.2 Completeness for P5 frames

The frame completeness theorem follows from the general pattern of canonicity-for-a-
property : we prove that the canonical frame for any normal modal logic containing p5
satisfies property (P5), while p5 is valid on any class of frames satisfying (P5) (as shown
in theorem 3.2). The strong frame-completeness result follows immediately.

We will not repeat the definition of the canonical frame for a normal modal logic; we
follow the standard notation, as in [Gol92]. We remind that the states of the canonical
frame (whose set is denoted as WΛ) are maximal Λ-consistent sets (Λ-MCSs) and we
reserve uppercase Greek letters Γ, ∆, Ξ for denoting Λ-MCSs. The standard definition of
the accessibility relation RΛ between states in the canonical frame is: ΓRΛ

∆ iff for every
ϕ ∈ L2 (2ϕ ∈ Γ ⇒ ϕ ∈ ∆) iff for every ϕ ∈ L2 (ϕ ∈ ∆ ⇒ 3ϕ ∈ Γ).

Theorem 3.4 Let Λ be a normal modal logic containing p5. Then, its canonical frame
satisfies (P5), that is

∀Γ, ∆, Ξ ∈ WΛ
(
(ΓRΛ

∆ ∧ ΓRΛ
Ξ ∧ ∆ 6= Ξ) ⇒ (∆RΛ

Ξ ∧ ∆RΛ
∆)

)

Proof. Let Γ, ∆, Ξ ∈ WΛ be such that

ΓRΛ
∆, ΓRΛ

Ξ and ∆ 6= Ξ (3.4.i)

So, for all ϕ ∈ L2,

ϕ ∈ ∆ ⇒ 3ϕ ∈ Γ and 2ϕ ∈ Γ ⇒ ϕ ∈ ∆ (3.4.ii)

ϕ ∈ Ξ ⇒ 3ϕ ∈ Γ and 2ϕ ∈ Γ ⇒ ϕ ∈ Ξ (3.4.iii)

(a) It will be shown that ∆RΛ
∆. Let ϕ ∈ ∆. Since ∆ and Ξ are Λ-MCSs and different

sets, they are orthogonal to each other: it cannot be the case that ∆ ⊂ Ξ or Ξ ⊂ ∆

[Gol92, Ch. 2]. Therefore, there exists a formula ψ such that ψ ∈ ∆ and ψ /∈ Ξ i.e.
(since Ξ is a Λ-MCS) ψ ∈ ∆ and ¬ψ ∈ Ξ. But, for every Λ-MCS ∆ it is known that
ϕ ∧ ψ ∈ ∆ ⇐⇒ ϕ ∈ ∆ ∧ ψ ∈ ∆. So, we get ϕ ∧ ψ ∈ ∆ i.e. by (3.4.ii),

3(ϕ ∧ ψ) ∈ Γ (3.4.iv)

We also get ¬ϕ ∨ ¬ψ ∈ Ξ. But ¬ϕ ∨ ¬ψ ⊃ ¬(ϕ ∧ ψ) ∈ Λ ⊆ Ξ (by propositional logic
(PC)) and therefore (because Ξ is closed under modus ponens (MP)) ¬(ϕ ∧ ψ) ∈ Ξ i.e.
by (3.4.iii),

3¬(ϕ ∧ ψ) ∈ Γ (3.4.v)
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Furthermore, p5 ∈ Λ which means (by taking the appropriate substitution instance),

3¬(ϕ ∧ ψ) ⊃ (3(ϕ ∧ ψ) ⊃ 23(ϕ ∧ ψ)) ∈ Λ ⊆ Γ

Consequently, 23(ϕ∧ψ) ∈ Γ (by (3.4.iv), (3.4.v) and by the fact that Γ is closed under
(MP)). Hence, by (3.4.ii), 3(ϕ ∧ ψ) ∈ ∆. We know that 3(ϕ ∧ ψ) ⊃ 3ϕ ∧ 3ψ is a
theorem of every normal modal logic; it follows that 3ϕ ∧ 3ψ ∈ ∆ and thus 3ϕ ∈ ∆.
So, it has been proved that for any formula ϕ, ϕ ∈ ∆ ⇒ 3ϕ ∈ ∆, which means by
definition, ∆RΛ

∆.
(b) It remains to show that ∆RΛ

Ξ. Let ϕ ∈ Ξ; we have to prove that 3ϕ ∈ ∆.
If ϕ ∈ ∆, then by a) and by definition, 3ϕ ∈ ∆.
If ϕ /∈ ∆, then ¬ϕ ∈ ∆ (because ∆ is a Λ-MCS). So, by (3.4.ii),

3¬ϕ ∈ Γ (3.4.vi)

Since ϕ ∈ Ξ, by (3.4.iii),
3ϕ ∈ Γ (3.4.vii)

But, p5 ∈ Λ. Therefore, 3¬ϕ ⊃ (3ϕ ⊃ 23ϕ) ∈ Λ ⊆ Γ. Hence, by (3.4.vi), (3.4.vii)
and by the fact that Γ is closed under (MP), 23ϕ ∈ Γ. So, by (3.4.ii), 3ϕ ∈ ∆.
So, it has been proved that for any formula ϕ, ϕ ∈ Ξ ⇒ 3ϕ ∈ ∆, which means by
definition, ∆RΛ

Ξ.

It follows, in a standard fashion that:

Theorem 3.5 The normal modal logic Kp5 is sound and complete with respect to the
class of all frames satisfying (P5).

3.3 Finite Model Property of Kp5

The Finite Model Property (FMP) states that any non-theorem of a logic Λ can be
falsified in a finite Λ-model [BdRV01, Sect. 3.4][Gol92, Ch. 4]. For normal modal
logics it is equivalent to the Finite Frame Property and it guarantees decidability for
a finitely axiomatized logic. We prove the FMP for Kp5 via a variant of the filtration
method. This method provides a flexible tool for collapsing Λ-models to construct a
falsifying model for a non-theorem of a logic. We repeat some basic definitions in the
interests of self-containment; more details can be found in any modal logic textbook
[BdRV01, Che80, Gol92].

Definition 3.6 Let Σ be a set of L2 formulas and M = 〈W,R, V 〉 a model. Consider
a relation !Σ⊆ W ×W s.t.:

w !Σ v ⇐⇒ (∀ϕ ∈ Σ)(M, w ° ϕ ⇐⇒ M, v ° ϕ)

!Σ is an equivalence relation. We denote now by |w|Σ (or just |w|) the equivalence class
[w/!Σ] of w (with respect to !Σ), and by WΣ the quotient set [[W/!Σ]] of W (with
respect to !Σ). Assuming the Axiom of Choice (AC), let ρ : WΣ → W be a choice

9



function and VΣ : Φ → P(WΣ) be a valuation s.t. VΣ(p) = {λ ∈ WΣ | M, ρ(λ) ° p}
(∀p ∈ Φ).
Furthermore, consider a relation ≡ ⊆ Σ× Σ defined by

ϕ ≡ ψ ⇐⇒ `K ϕ ↔ ψ

Since ≡ is an equivalence relation, we denote by [ϕ] the equivalence class [ϕ/≡] of ϕ
(with respect to ≡), and by IΣ the quotient set [[Σ/≡]] of Σ (with respect to ≡).
Finally, we define the relation !IΣ⊆ W ×W s.t.:

w !IΣ v ⇐⇒ (∀ψ ∈ Σ)(∀ϕ ∈ [ψ])(M, w ° ϕ ⇐⇒ M, v ° ϕ)

Again, !IΣ is an equivalence relation and we denote by |w|IΣ the equivalence class
[w/ !IΣ ] of w (with respect to !IΣ), and by WIΣ the quotient set [[W/ !IΣ ]] of W
(with respect to !IΣ).

Definition 3.7 Given a model M = 〈W,R, V 〉 and a subformula closed set of formulas
Σ, a model 〈WΣ, Rf , VΣ〉 is called a filtration of M through Σ iff

(i) (∀w, v ∈ W )(wRv ⇒ |w|Rf |v|)
(ii) (∀λ, µ ∈ WΣ)

(
λRfµ ⇒ (∀3ϕ ∈ Σ)(M, ρ(µ) ° ϕ ⇒ M, ρ(λ) ° 3ϕ)

)

The well-known Filtration Theorem states that if Mf = 〈WΣ, Rf , VΣ〉 is a filtration
of M through a subformula closed set of formulas Σ, then (∀ϕ ∈ Σ)(∀w ∈ W )(M, w °
ϕ ⇐⇒ Mf , |w| ° ϕ). The following definition actually collects the notions (and the
accompanying notation) that will allow us to collapse an infinite model to a finite one.
The latter, is certified by the lemma 3.8.

Lemma 3.8 Let Σ be a set of L2 formulas and M = 〈W,R, V 〉 a model.

(i) (∀w, v ∈ W )(w !Σ v ⇐⇒ w !IΣ v)

(ii) If IΣ is finite, so is WΣ.

Proof. (i) is obvious and left to the reader. For (ii), we define function g : WΣ → P(IΣ)
s.t. for all λ ∈ WΣ

g(λ) = {κ ∈ IΣ | (∃ϕ ∈ Σ)(κ = [ϕ] ∧M, ρ(λ) ° ϕ)}
Consider now, λ, µ ∈ WΣ s.t. λ 6= µ. Since, ρ(λ) ∈ λ, |ρ(λ)|Σ = λ, and so, |w|Σ 6= |v|Σ,
where w = ρ(λ) and v = ρ(µ). Hence, w !Σ6 v, and using (i), w !IΣ6 v. So,

(∃ψ ∈ Σ)(∃ϕ ∈ [ψ])(M, w ° ϕ ∧M, v ° ¬ϕ)

therefore, [ϕ] ∈ g(λ). Suppose, for the sake of contradiction, that [ϕ] ∈ g(µ). Then,
there would be χ ∈ Σ s.t. [ϕ] = [χ] and M, v ° χ, hence, M, v ° ϕ, which is a
contradiction. Consequently, g(λ) 6= g(µ), hence, g is injective, so, WΣ ≤c P(IΣ). Since
IΣ is finite, so is WΣ.
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The following lemma allows us to construct a finite Kp5 model for our purposes.

Lemma 3.9 Let M = 〈W,R, V 〉 be a model, Σ a subformula closed set of formulas s.t.
if 3ϕ ∈ Σ, then 2ϕ ∈ Σ. Consider a relation Rp ⊆ WΣ ×WΣ s.t. ∀λ, µ ∈ WΣ

λRpµ ⇐⇒ (∀3ϕ ∈ Σ)(M, ρ(µ) ° ϕ ∨2ϕ ∨23ϕ ⇒ M, ρ(λ) ° 3ϕ ∧32ϕ)

The model 〈WΣ, Rp, VΣ〉 is a filtration of M through Σ and if R has property (P5),
so does Rp.

Proof. Clearly, by the definition of filtrations, 〈WΣ, Rp, VΣ〉 is a filtration of M through
Σ. Suppose now that R has property P5. Then, by theorem 3.2, M is a model for p5.
Next, consider 4 |w|, |v|, |u| ∈ WΣ s.t. |w|Rp|v|, |w|Rp|u| and |v| 6= |u|.
Assume that 2ϕ ∈ Σ, i.e. ¬3¬ϕ ∈ Σ. But, Σ is subformula closed. So, 3¬ϕ ∈ Σ,
and by definition (since |w|Rp|v|) M, v ° ¬ϕ∨2¬ϕ∨23¬ϕ ⇒ M, w ° 3¬ϕ∧32¬ϕ.
Therefore

(∀2ϕ ∈ Σ)(M, w ° 2ϕ ∨23ϕ ⇒ M, v ° ϕ ∧3ϕ ∧32ϕ) (3.9.i)

Consider now any 3ϕ ∈ Σ and suppose that M, u ° ϕ∨2ϕ∨23ϕ. By definition (since
|w|Rp|u|), M, w ° 3ϕ ∧32ϕ. Hence, since p5 is globally true in M, M, w ° 2ϕ. So,
since 3ϕ ∈ Σ, by definition of Σ, 2ϕ ∈ Σ and using 3.9.i we get that M, v ° 3ϕ∧32ϕ.
Consequently, |v|Rp|u|. Similarly, it can be proved that |v|Rp|v|, so Rp has property
(P5).

The following theorem concludes this section and verifies that Kp5 has the Finite Model
Property. Decidability of Kp5 readily follows.

Theorem 3.10 Logic Kp5 has the finite model property with respect to the class of all
models satisfying (P5).

Proof. Let ψ be a satisfiable L2 formula in a (P5)-model 〈W,R, V 〉. It suffices to
show that ψ is satisfiable in a finite (P5)-model. Consider Σ, the smallest subformula-
closed set of formulas containing ψ, in which also the following closure condition holds:
if 3ϕ ∈ Σ, then 2ϕ ∈ Σ. Using the Filtration Theorem and Lemma 3.9, we are able
to prove that ψ is true in the (P5)-model 〈WΣ, Rp, VΣ〉. It suffices to show that IΣ

is finite; then, Lemma 3.8-(ii) immediately applies. In general, Σ is infinite, since for
every 3ϕ ∈ Σ it contains also ¬3¬ϕ, 3¬ϕ, ¬3¬¬ϕ, 3¬¬ϕ, ¬3¬¬¬ϕ and so on.
But, instead of those infinitely many formulas, IΣ contains for every 3ϕ ∈ Σ, only the
equivalence classes [¬3¬ϕ], [3¬ϕ], [¬3ϕ] and [3ϕ]. Since the set of all subformulas of
ψ is finite and there are only finitely many formulas of the form 3ϕ in Σ, IΣ is finite.
The proof is complete.

4The definition of !Σ guarantees that Rp and VΣ are independent from the choice function ρ. So,
instead of referring to an equivalence class λ ∈ WΣ, we will simply write |w| ∈ WΣ, where w ∈ W is
any representative of class λ.
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4 Neighbourhood Semantics and p5

In this section we identify a condition for the validity of p5 in the context of neighbour-
hood semantics5. We are not able to provide a complete exposition of this semantics in
this paper; it is described as ‘the most general kind of possible-worlds semantics compat-
ible with keeping the classical truth-table semantics for the truth-functional operators ’
[HC96, page 221]. The validity of axiom K is no more mandatory in this semantics and
this has some consequences in epistemic logics.

Definition 4.1 A neighbourhood frame F = 〈W,N〉 for the basic mono- modal language
L2 consists of a set W of states (possible worlds), equipped with a function N : W →
P(P(W )). A neighbourhood model M = 〈W,N, V 〉 based on F, includes a valuation
V : Φ → P(W ) providing a truth value to every propositional variable inside each
possible world.
As in Kripke semantics, every formula of L2 is interpreted locally, inside every state.
So, an extension V of V to all L2-formulae can be defined recursively, providing a truth
value to every L2-formula. If ϕ is true in w ∈ W , we write w ∈ V (ϕ) or equivalently
M, w °n ϕ. In the recursive definition of V the classical propositional connectives are
interpreted in the obvious way. Furthermore,

w ∈ V (2ϕ) ⇐⇒ V (ϕ) ∈ N(w)

Since, V (3ϕ) = V (¬2¬ϕ), we get analogously,

w ∈ V (3ϕ) ⇐⇒ W \ V (ϕ) /∈ N(w)

Again, as in Kripke semantics, we speak about truth in a possible world (defined above),
validity in a model (truth in every world of the model) and validity in a frame (validity
in every model built on that frame).

Consider now, the following property of function N : W → P(P(W ))

(∀w ∈ W )(∀X ⊆ W )

(
W \X /∈ N(w) ∧ {v ∈ W | X /∈ N(v)} /∈ N(w)

) ⇒ X ∈ N(w) (P5n)

We prove below, that this condition semantically corresponds to the axiom p5 in
the context of neighbourhood demantics.

Theorem 4.2 Let F = 〈W,N〉 be a neighbourhood frame for L2. Then, p5 is valid in
F iff F satisfies condition (P5n).

Proof. (⇒) We will prove the contrapositive. Assume any neighbourhood frame F =
〈W,N〉 which does not satisfy (P5n), i.e. there are w ∈ W and X ⊆ W s.t. W \ X /∈

5also called minimal model semantics in [Che80] or Montague semantics in other parts of the modal
logic literature.
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N(w), {v ∈ W | X /∈ N(v)} /∈ N(w) and X /∈ N(w). Then, define a valuation V s.t.
V (p) = X (p ∈ Φ). So, W \ V (p) /∈ N(w), W \ V (2p) /∈ N(w) and V (p) /∈ N(w).
Hence, M, w °n 3p ∧32p, but M, w 1n 2p.
(⇐) Suppose that F satisfies condition (P5n). Let M = 〈W,N, V 〉 be any neighbourhood
model based on F, and w be any state s.t. M, w °n 3ϕ∧32ϕ. Then, W \V (ϕ) /∈ N(w)
and W \ V (2ϕ) /∈ N(w), i.e. {v ∈ W | V (ϕ) /∈ N(v)} /∈ N(w). Now, condition (P5n)
can be applied. Hence V (ϕ) ∈ N(w), i.e. M, w °n 2ϕ.

We wish to remind here that this kind of results is not captured by the Sahlqvist theorem
or any of its improvements and it has an independent value.

5 KTp5 = KT5 = S5

We come now to examine the epistemic value of p5 in the context of classical epistemic
reasoning, as initiated by Hintikka’s work in the ’60s [Hin62]. The interval of modal
logics that has been mainly investigated in the literature for this purpose is [S4,S5]
[Len79], and it is known that KT4w5 (Sw5) has been proposed as a weak alternative
to S5 [Seg71]. It seems natural to consider p5 as another alternative to negative in-
trospection (axiom 5); we have already noticed that we expected that it would have
appeared in the literature. A possible, plausible - yet partial - explanation is provided
by the fact that when p5 is added to S4, S4 + p5 (namely, KT4p5) collapses to S5,
so nothing new is gained.

Theorem 5.1 KT4p5 = KTp5 = S5.

Proof. Axiom 5 entails p5 by a straightforward propositional proof, which implies
that KTp5 ⊆ KT5 = S5. For the other conclusion, consider the following derivation
of 5 in KTp5:

1. ¬p ⊃ 3¬p axiom T
2. 2¬p ⊃ 23¬p 1, (RM)
3. 2¬p ∧3¬p ⊃ 23¬p 2, (PC)− (MP )
4. 2¬p ⊃ (3¬p ⊃ 23¬p) 3, (PC)− (MP )
5. 2¬p ⊃ (32p ⊃ 2p) 4, (PC)− (MP )
6. 3p ⊃ (32p ⊃ 2p) axiom p5
7. 3p ∨2¬p ⊃ (32p ⊃ 2p) 5, 6, (PC)− (MP )
8. 3p ∨2¬p tautology
9. 32p ⊃ 2p 7, 8, (MP )

In the proof above, RM stands for the rule ϕ⊃ψ
2ϕ⊃2ψ

[Che80, Ch. 4], PC, MP stand for
Propositional Calculus and Modus Ponens respectively. So, KTp5 = KT5 and actually
KT4p5 = KTp5 = S5.

It follows that Sw5 is properly included in KT4p5 (= S5). It remains to notice that p5
could be considered as a possible alternative for negative introspection to the doxastic
logic KD45, commonly known as the ‘logic of consistent belief ’. It is not hard to identify
that KD4p5 is a genuinely new doxastic logic.
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6 Conclusions

In this paper we have examined an axiom of negative introspection arising from a propo-
sitionally definable McDermott-Doyle logic. Starting from the fundamental question on
the limits of propositional definability in this family, we have come up with axiom p5
which is new in the modal logic literature. Apart from its potential significance for
reconstructing narrow expansions, it has a natural epistemic interpretation, despite the
fact that nothing genuinely is gained by replacing 5 by p5, in the axiomatization of
S5. A first direction of future research would be the assessment of the logic intro-
duced in Section 2 for Knowledge Representation; in parallel, it is worth investigating
the semantics of the underlying subnormal modal logic p5, along the lines devised in
[FMT92].

In general, we feel that it would be worth examining autoepistemic logics by trying
different variants of positive or negative introspection operators. Many new interest-
ing notions (including axioms and logics) may emerge, or gain attention in directions
unforeseen hitherto. It can be hardly denied by now that, despite many initial serious
objections, modal logic itself has become richer through its involvement in AI-motivated
epistemic reasoning.

On the other hand, the McDermott-Doyle family has been deeply explored. It is
interesting to examine variants of this fixpoint equation, and the propositional defin-
ability of the emerging logics. Up to now, the most concrete proposal has been the
provability-motivated family of boxed and super-boxed expansions of [ACP96, ACGP96]
which remain largely unexplored.
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[MT90] V. W. Marek and M. Truszczyński. Modal logic for default reasoning. Annals
of Mathematics and Artificial Intelligence, 1:275–302, 1990.
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