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Abstract

Stable belief sets were introduced by R. Stalnaker in the early ’80s, as a formal
representation of the epistemic state for an ideal introspective agent. This notion
motivated Moore’s autoepistemic logic and greatly influenced modal nonmono-
tonic reasoning. Stalnaker stable sets possess an undoubtly simple and intuitive
definition and can be elegantly characterized in terms of S5 universal models or
KD45 situations. However, they do model an extremely perfect introspective
reasoner and suffer from a KR version of the logical omniscience problem. In this
paper, we vary the context rules underlying the positive and/or negative intro-
spection conditions in the original definition of R. Stalnaker, to obtain variant
notions of a stable epistemic state, which appear to be more plausible under the
epistemic viewpoint. For these alternative notions of stable belief set, we obtain
representation theorems using possible world models with non-normal (impossi-
ble) worlds and neighborhood modal models. En route, we identify some modal
axioms which appear to be of some interest in KR and develop the proof theory of
some regular and classical modal logics with a notion of strong provability. This
stream of research resembles the questions posed and (partly) settled in classical
(monotonic) epistemic reasoning about logical omniscience, now examined under
the perspective of Knowledge Representation.



1 Introduction

Classical epistemic reasoning has been born and bred within the realm of Philosophical
Logic and always had a modal flavour, already from its early inception in Hintikka’s
seminal work [Hin62]. The epistemic/doxastic logic stream of research was very active
for more than two decades and mainly revolved around constructing and discussing ax-
iomatic systems which accurately describe the phenomena of knowledge and belief, from
the perspective of a philosopher ‘externally’ reasoning about other entities’ knowledge
[Len79]. Many axiomatic systems have been proposed and several problems around
this axiomatic approach to knowledge and belief have been identified and discussed (see
[Len78, HM92]); in more recent years, epistemic and doxastic modal logics have found
important applications in Knowledge Representation and Computer Science [FHMV03].

AI has created a completely new battlefield for epistemic reasoning, through the
attempts to construct nonmonotonic logics in Knowledge Representation. The perspec-
tive of KR is much different, as the objective now is to describe ‘internally’ the epistemic
capabilities of an intelligent agent reasoning on his/her own beliefs. The use of modal
languages and the import of techniques from classical epistemic reasoning have been
employed from as early as the beginning of the ‘80s, when nonmonotonic logics have
been announced. Modal nonmonotonic reasoning has been introduced through the work
of D. McDermott and J. Doyle [MD80], with the use of a fixpoint construction which has
been seriously criticized initially. Stable belief sets were introduced by R. Stalnaker at
the same time; the short note [Sta93] was written as a commentary on modal nonmono-
tonic logic and proposed the notion of a stable set of beliefs as a formal representation
of the epistemic state of an ideally rational agent, with full introspective capabilities.
Assuming a propositional language, endowed with a modal operator �ϕ, interpreted as
‘ϕ is believed ’, a set of formulas S is a stable set if it is ‘stable’ under classical inference
and epistemic introspection:

(i) CnPC(S) ⊆ S

(ii) ϕ ∈ S implies �ϕ ∈ S

(iii) ϕ /∈ S implies ¬�ϕ ∈ S

This notion proved to be of major importance in nonmonotonic modal logics. Ac-
cording to [Sta93], R. Moore has written that this notion ‘ .. was a very important
influence on the development of autoepistemic logic’ [Moo85]; it also played a role in the
logical investigations of Marek, Schwarz and Truszczyński on the McDermott & Doyle
family of modal nonmonotonic modal logics [MT93]. Actually, the definition of stable
sets was the first important step towards the idea of constructing epistemic logic(s) in
nonmonotonic reasoning, without any appeal to classical modal logic (known as the
‘Modality Si, Modal Logic No! ’ motto of J. McCarthy).

The syntactic definition of stable sets is very natural and intuitive. Further research
quickly revealed that they possess interesting properties while they do also admit sim-
ple and elegant semantic characterizations: they can be represented as the theories of
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universal (S5) Kripke models, or alternatively, as the set of beliefs of an agent residing
in a KD45 situation (see [MT93, Chapt.8], [Hal97a]).

It is not hard to see however, that Stalnaker’s stable sets model an extremely perfect
reasoner. In a sense, the situation is reminiscent of the ‘logical omniscience’ problem
in classical epistemic logic: normal modal logics of knowledge describe a reasoner who
knows all the logical consequences of his/her beliefs; more on this, in section 2. Actually,
the situation in Stalnaker’s stable sets is a bit more uncomfortable: all tautologies are
known and a stable set is a theory maximally consistent with provability in S5. This
raises some important philosophical and technical questions in modal non-monotonic
reasoning, observed in [Hal97a] and addressed from a fine viewpoint in the work of
Marek, Schwarz and Truszczyński [MST93].

So, stable sets are defined by calling for closure under (classical propositional logic
and) suitable context rules, intended to capture positive and negative introspection
on self beliefs. They are characterized by (and represented as theories of) well-known
epistemic possible-worlds models, which have emerged in logics of classical epistemic
reasoning (S5, KD45). It is absolutely natural to investigate whether one can define
in a natural way, variants of this notion which represent a less ideal and less omniscient
agent, while retaining some of their interesting and useful properties; in this direction
it is interesting from the KR viewpoint to work on the following two questions, related
to the interplay between syntax and semantics of stable epistemic states:

• can we weaken the positive and/or negative introspection conditions (seen hence-
forth as context-dependent rules) in Stalnaker’s original definition and still obtain
a plausible (and perhaps, more pragmatic) notion of stable epistemic state? For
such an emerging notion, does there exist a good model-theoretic representation?

• can we suitably replace S5 and KD45 in the semantic characterization of stable
sets, with a possible-worlds model (possibly with non-normal worlds or a neigh-
borhood model) determining some other classical modal logic and prove that the
emerging notion of an epistemic state admits a syntactic definition in terms of
(closure under) natural positive and negative introspection conditions?

In this paper, we work on the first of these two questions, actually the most important
from the KR viewpoint. We vary conditions (ii) and (iii) in Stalnaker’s definition to
obtain three weaker notions of an epistemic state. We obtain semantic characterizations
for the notions of stable sets we define; not surprisingly, we have to employ impossible
worlds and neighborhood modal models. In Section 2 we gather the necessary technical
background needed for our results, establishing notation and terminology. In Section 3
we very briefly mention some results we have obtained on the determination of classical
and regular modal logics, with a notion of strong provability from premises. These results
are later used for obtaining our representation theorems. Sections 4 and 5 form the core
of our results: we define, examine and characterize weaker notions of a stable epistemic
state. In Section 6 we comment on related work and discuss open questions for future
research.
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2 Background Material

In this section we gather the necessary background material and results. For the basics
of Modal Logic the reader is refered to the books [BdRV01, Che80, HC96] and for the
essentials of modal nonmonotonic logics to [MT93]. We assume a modal propositional
language L�, endowed with an epistemic operator �ϕ, read as ‘it is believed that ϕ
holds’. Sentence symbols include � (for truth) and ⊥ (for falsity).

Some of the important axioms in epistemic/doxastic logic are:

K. (�ϕ ∧ �(ϕ ⊃ ψ)) ⊃ �ψ 1

T. �ϕ ⊃ ϕ (axiom of true, justified knowledge)

D. �ϕ ⊃ ¬�¬ϕ or ¬(�ϕ ∧ �¬ϕ) (consistent belief)

4. �ϕ ⊃ ��ϕ (positive introspection)

5. ¬�ϕ ⊃ �¬�ϕ (negative introspection)

w5. (ϕ ∧ ¬�ϕ) ⊃ �¬�ϕ (weak negative introspection)

p5. (¬�ϕ ∧ ¬�¬ϕ) ⊃ �¬�ϕ (weak negative introspection)

Modal logics are sets of modal formulae containing classical propositional logic
(i.e. containing all tautologies in the augmented language L�) and closed under rule
MP.ϕ,ϕ⊃ψ

ψ
. The smallest modal logic is denoted as PC (propositional calculus in the

augmented language). A set T of formulae is called consistent iff (∀n ∈ N, ∀ϕ0, . . . , ϕn ∈
T ) ϕ0∧ . . .∧ϕn ⊃ ⊥ /∈ PC; otherwise, T is called inconsistent. Normal are called those
modal logics, which contain all instances of axiom K and are closed under rule

RN.
ϕ

�ϕ

By KA1 . . .An we denote the normal modal logic axiomatized by axioms A1 to An.
Well-known epistemic logics comprise KT45 (S5) (a strong logic of knowledge) and
KD45 (a logic of consistent belief ).

Normal modal logics are interpreted over Kripke models: a Kripke model M =
〈W,R, V 〉 consists of a set of possible worlds W and a binary relation between them
R ⊆ W ×W : whenever wRv, we say that world w ‘sees ’ world v. The valuation V
determines which propositional variables are true inside each possible world. Within a
world w, the propositional connectives (¬, ⊃, ∧, ∨) are interpreted classically, while
�ϕ is true at w iff it is true in every world ‘seen’ by w, notation: (M, w � �ϕ iff
(∀v ∈W )(wRv ⇒ M, v � ϕ)).

A logic Λ is determined by a class of models iff it is sound and complete with respect
to this class; it is known that S5 is determined by the class of Kripke models with a
universal relation, while KD45 is determined by the class of models where each world

1In our notation K is the axiomatic scheme (�ϕ∧�(ϕ ⊃ ψ)) ⊃ �ψ i.e. K = US
(
(�p∧�(p ⊃ q)) ⊃

�q
)
, where US(ϕ) is the set of all universal substitution instances of ϕ.
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w ‘sees ’ a ’cluster ’ (i.e. a universally connected subset) of worlds; every model of this
class has the form 〈{w} ∪W, ({w} ∪W ) ×W,V 〉).

Normal modal epistemic logics suffer from the so-called logical omniscience problem,
which can be attributed to axiom K and rule RN. Because of the latter, all tautologies
are known. Also, because of the axiom K, logical consequences of knowledge constitute
knowledge, something unreasonable in realistic situations. Note however that axiom K
and axioms as simple as N.�� are unavoidable in Kripke models and ubiquitous in
normal modal logics.

A first step towards solving the logical omniscience problem is by defining regular
modal logics which contain K, but substitute rule RN for rule

RM.
ϕ ⊃ ψ

�ϕ ⊃ �ψ

We denote by KA1 . . .AnR the regular modal logic axiomatized by axioms A1 to An.
Regular modal logics are interpreted on a strange species of possible world models,
introduced by Kripke too; we will call them q-models here (M = 〈W,N,R, V 〉). We now
have two kinds of worlds: normal worlds (N), which behave in the way we described
above and non-normal (also called queer or impossible) worlds (W \N), where nothing
is known/believed (�ϕ is never true there) and everything is consistent to our state of
affairs (¬�¬ϕ is always true there). Within a world w, the propositional connectives are
interpreted classically and �ϕ is true at w iff w ∈ N and (∀v ∈W )(wRv ⇒ M, v � ϕ)).

This however does not avoid the effect of K: to be able to eliminate K we have to
resort to neighborhood (also called Montague or minimal in [Che80]) semantics. In this
kind of models, which we will call n-models, each world does not ‘see’ other worlds but
it is associated to possible ‘neighborhoods’ (subsets) of possible worlds: an n-model is
a triple N = 〈W,E, V 〉, where W is any set of worlds, E is any function assigning to
any world, its sets of ‘neighboring’ worlds (i.e. E : W → P(P(W ))) and V is again a
valuation. The interpretation of any formula is exactly as in Kripke models, except of
the formulas of the form �ϕ; such a formula is true at w iff the set of worlds where ϕ
holds, belong to the possible neighborhoods of w: V (ϕ) = {v ∈ W | N, v � ϕ} ∈ E(w).
Theory of a (Kripke, q- or n-) model M (denoted as Th(M)) is the set of all formulae
being true in every world of M.

Having a q-model, we can define a pointwise equivalent n-model:

Definition 2.1 Let M = 〈W,N,R, V 〉 be a q-model and NM = 〈W,E, V 〉 the n-model,
where E(w) = {X ⊆ W | Rw ⊆ X}2, if w ∈ N , and E(w) = ∅, if w ∈ W \N . NM is
called the equivalent n-model produced by M.

This notion of ‘equivalence’ seems to be appropriate, because of the following result:

Proposition 2.2 Let M = 〈W,N,R, V 〉 be a Kripke q-model. Then

(∀ϕ ∈ L�)(∀w ∈W )(M, w � ϕ ⇐⇒ NM, w � ϕ)

2Rw = {v ∈ W | wRv}
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Proof. By induction on the complexity of ϕ. Induction base and boolean cases of
induction step are obvious. So, let us focus on �ϕ.

M, w � �ϕ ⇐⇒ w ∈ N ∧ (∀v ∈ W )(wRv ⇒ M, v � ϕ)
Ind.Hyp.⇐⇒ w ∈ N ∧ (∀v ∈ W )(v ∈ Rw ⇒ NM, v � ϕ)
⇐⇒ w ∈ N ∧ Rw ⊆ V (ϕ)
Def.2.1⇐⇒ V (ϕ) ∈ E(w)
⇐⇒ NM, w � �ϕ

The directed graph F = 〈W,R〉, underlying a (Kripke, q-, or n-) model, is called a frame.
A modal logic Λ is called classical iff it is closed under the rule

RE.
ϕ ≡ ψ

�ϕ ≡ �ψ

See [Che80] for results on the characterization of classical modal logics in terms of
Montague semantics. By A1 . . .AnC we denote the classical modal logic axiomatized
by axioms A1 to An.

It is convenient in our paper to consider the following context-dependent versions of
the modal rules mentioned up to this point: assuming a set S of modal formulae, we
denote the rules

RNc.
ϕ ∈ S

�ϕ ∈ S
NIc.

ϕ /∈ S

¬�ϕ ∈ S

RMc.
ϕ ⊃ ψ ∈ S

�ϕ ⊃ �ψ ∈ S
REc.

ϕ ≡ ψ ∈ S

�ϕ ≡ �ψ ∈ S

Stalnaker stable sets are closed under propositional reasoning (i), under rule RNc

(ii) and rule NIc (iii). The following theorem gathers some of their useful properties;
see [MT93] for a proof.

Theorem 2.3

(i) If a set S is stable, then it is closed under strong S5 provability. In particular, it
contains every instance of K, T, 4, and 5.

(ii) A set S is stable iff it is the theory of a Kripke model with a universal accessibility
relation.

(iii) A set S is stable iff it is the set of formulae believed in a world w of a KD45-
model, i.e. S is stable iff there is a KD45-model M = 〈W,R, V 〉 and (∃w ∈ W )
S = {ϕ ∈ L� | M, w � �ϕ}.
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3 A digression: Regular and Classical Modal Logics

To be able to characterize the stable sets introduced in the subsequent sections, we have
to work on the proof theory of regular and classical modal logics with a notion of strong
provability from premises. The results are original, in the sense that they have not been
developed elsewhere, yet they are quite lengthy to be included in this extended abstract
and they are left for the full paper.

Regular modal logics Firstly, we employ the axioms:

4�. �ϕ ⊃ �(�� ⊃ �ϕ)

B�. (ϕ ∧ ��) ⊃ �¬�¬ϕ
5�. ¬�ϕ ∧ �� ⊃ �¬�ϕ

The first of them appears in [Seg71] and all of them seem useful in our KR investi-
gations. Furthermore, for a q-frame F = 〈W,N,R〉, we employ following property:

(Uq) (∀w ∈ N)(∀v ∈W )wRv

The notion of strong provabillity from premises in a regular modal logic is defined
as usual.

Definition 3.1 If {A0, . . . , An} ⊆ L� is a set of axioms of regular modal logic Λ (i.e.
Λ = KA0 . . .AnR is the smallest regular modal logic containing A0, . . . , An) and I ⊆ L�

is a set of premises, then for any formula ϕ we say that there is an RM-proof of ϕ from
premises I in Λ (I �Λ ϕ) iff there is a Hilbert-style proof, where each step of the proof
is either a formula in PC∪K∪US(A0)∪ . . .∪US(An)∪ I or a result of applying MP
or RM to formulas of previous steps and the last formula in this proof is ϕ.

The consistency of theories is also defined as usual.

Definition 3.2 A theory I ⊆ L� is called consistent with regular modal logic Λ (abbr.
cΛ-theory) iff I �Λ ⊥; otherwise, I is called inconsistent with Λ (abbr. incΛ-theory).
Supposed that I is a cΛ-theory, a set of formulae T is called I-consistent with Λ (abbr.
IcΛ-theory) iff (∀n ∈ N, ∀ϕ0, . . . , ϕn ∈ T ) I �Λ ϕ0∧ . . .∧ϕn ⊃ ⊥; otherwise, T is called
I-inconsistent with Λ (abbr. IincΛ-theory).
T is called maximal I-consistent with Λ (abbr. mIcΛ-theory) iff T is IcΛ and (∀ψ /∈ T )
T ∪ {ψ} is IincΛ.

Following lemma contains useful properties for maximal consistent theories.

Lemma 3.3 Let I be a cΛ-theory and Γ a mIcΛ-theory. Then

(i) Γ is closed under (MP)

(ii) (∀ϕ ∈ L�)(ϕ ∈ Γ or ¬ϕ ∈ Γ)
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(iii) (∀ϕ ∈ L�)(I �Λ ϕ⇒ ϕ ∈ Γ)

(iv) (∀ϕ ∈ L�)(ϕ ∧ ψ ∈ Γ ⇔ (ϕ ∈ Γ and ψ ∈ Γ))

Proof. Consider any ϕ, ψ ∈ L�.
(i)
Suppose that ϕ, ϕ ⊃ ψ ∈ Γ and, for the sake of contradiction, that ψ /∈ Γ. Then,
Γ ∪ {ψ} would be an IincΛ-theory, i.e. there are n ≥ 0 and ϕ1, . . ., ϕn ∈ Γ s.t.
I �Λ ϕ1 ∧ . . .∧ϕn ∧ψ ⊃ ⊥, hence, I �Λ ϕ1 ∧ . . .∧ϕn ∧ϕ∧ (ϕ ⊃ ψ) ⊃ ⊥, i.e. Γ is IincΛ,
which is a contradiction.
(ii)
Suppose, for the sake of contradiction, that ϕ,¬ϕ /∈ Γ. Then, Γ∪{ϕ}, Γ∪{¬ϕ}, would
be both IincΛ-theories, i.e. there are n ≥ 0, m ≥ 0 and ϕ1,. . .,ϕn ∈ Γ s.t. I �Λ ϕ1∧ . . .
∧ϕn ∧ ϕ ⊃ ⊥ and ψ1,. . .,ψm ∈ Γ s.t. I �Λ ψ1∧ . . . ∧ψm ∧ ¬ϕ ⊃ ⊥.
– If n > 0 or m > 0, then I �Λ ϕ1∧ . . . ∧ϕn ∧ ψ1∧ . . . ∧ψm ⊃ ¬ϕ ∧ ϕ, therefore,
I �Λ ϕ1∧ . . . ∧ϕn ∧ ψ1∧ . . . ∧ψm ⊃ ⊥, so Γ is IincΛ, which is a contradiction.
– If n = 0 and m = 0, then I �Λ ϕ ∧ ¬ϕ, i.e. I �Λ ⊥, so I is incΛ, which is again a
contradiction.
(iii)
Suppose that I �Λ ϕ and, for the sake of contradiction, that ϕ /∈ Γ. Then, Γ∪{ϕ} would
be an IincΛ-theory, i.e. there are n ≥ 0 and ϕ1, . . ., ϕn ∈ Γ s.t. I �Λ ϕ1∧. . .∧ϕn∧ϕ ⊃ ⊥.
– If n > 0, then I �Λ ϕ1∧ . . . ∧ϕn ⊃ ¬ϕ, and, since I �Λ ϕ, I �Λ ϕ1∧ . . . ∧ϕn ⊃ ⊥,
i.e. Γ is IincΛ, which is a contradiction.
– If n = 0, then I �Λ ϕ ⊃ ⊥, and, since I �Λ ϕ, I �Λ ⊥, so I is incΛ, which is again
a contradiction.
(iv)
(⇒) Suppose that ϕ ∧ ψ ∈ Γ. Since I �Λ ϕ ∧ ψ ⊃ ϕ, by (iii), ϕ ∧ ψ ⊃ ϕ ∈ Γ, hence,
by (i), ϕ ∈ Γ. In exactly the same way, it can be proved that ψ ∈ Γ.
(⇐) Suppose that ϕ, ψ ∈ Γ. Since I �Λ ϕ ⊃ (ψ ⊃ ϕ∧ψ), by (iii), ϕ ⊃ (ψ ⊃ ϕ∧ψ) ∈ Γ,
hence, by (i), ϕ ∧ ψ ∈ Γ.

Aiming to construct a model, whose theory contains exactly all formulae, which can
be proved from I in Λ, we firstly prove following lemmata:

Lemma 3.4 Let I be a cΛ-theory. Then, there exist a nonempty IcΛ-theory.

Proof. Since I is cΛ, there is a ϕ ∈ L� s.t. I �Λ ϕ. Hence, {¬ϕ} is IcΛ.

Lemma 3.5 (Lindenbaum) Let I be a cΛ-theory and T an IcΛ-theory. Then, there
is a mIcΛ theory Γ s.t. T ⊆ Γ.

Proof. Since the infinite set Φ of propositional variables of our language L� is count-
able, there is an enumeration ϕ0, ϕ1, ϕ2, . . . of L�. Now, let us define recursively following
sequence of sets

T0 = T

Tn+1 =

{
Tn ∪ {ϕn} if Tn ∪ {ϕn} is IcΛ
Tn ∪ {¬ϕn} otherwise
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(a)
Firstly, we will prove by induction on n, that (∀n ∈ N)(Tn is IcΛ). It suffices to show
(in the ind. step) that if Tn ∪ {ϕn} is IincΛ, then Tn ∪ {¬ϕn} is IcΛ. So, if Tn ∪ {ϕn}
is IincΛ, then there are m ≥ 0 and ψ1,. . .,ψm ∈ Tn s.t. I �Λ ψ1∧ . . . ∧ψm ∧ ϕn ⊃ ⊥
(if I �Λ ψ1∧ . . . ∧ψm ⊃ ⊥, then Tn would be IincΛ, which is contradictory to ind.
hypothesis, hence, ϕn must appear in the conjunction). Now, suppose, for the sake of
contradiction, that Tn∪{¬ϕn} were IincΛ. Then, there would be p ≥ 0 and χ1,. . .,χp ∈
Tn s.t. I �Λ χ1∧ . . . ∧χp ∧ ¬ϕn ⊃ ⊥ (as before, ¬ϕn must appear in the conjunction).
– if m > 0 or p > 0, then I �Λ ψ1∧ . . . ∧ψm∧ χ1∧ . . . ∧χp ⊃ ⊥, i.e. Tn is IincΛ, which
is a contradiction, by ind. hypothesis.
– if m = 0 and p = 0, then I �Λ ¬ϕn and I �Λ ϕn, hence, I �Λ ⊥, i.e. I is incΛ, which
is also a contradiction.
(b)
It can be proved, by a trivial induction, that (∀i, j ∈ N)(i ≤ j ⇒ Ti ⊆ Tj)
(c)
Now, let us define Γ =

⋃
n∈N

Tn. Suppose, for the sake of contradiction, that Γ is
IincΛ, i.e. there are m ≥ 0 and ψ0, . . . , ψm ∈ Γ s.t. I �Λ ψ0 ∧ . . . ∧ ψm ⊃ ⊥. Since
ψ0, . . . , ψm appear in the enumeration of L�, there must be k0, . . . , km ∈ N s.t. ϕk0 =
ψ0, . . . , ϕkm = ψm. Furthermore, since ϕk0, . . . , ϕkm ∈ Γ, all Tk0 ∪{ϕk0}, . . . , Tkm ∪{ϕkm}
are IcΛ and ϕk0 ∈ Tk0+1, . . . , ϕkm ∈ Tkm+1, hence, by (b), ϕk0, . . . , ϕkm ∈ Tmax{k0,...,km}+1,
consequently, Tmax{k0,...,km}+1 is IincΛ, which is a contradiction, by (a).
(d)
Let now ϕ ∈ L� \ Γ. Since ϕ appears in the enumeration of L�, there must be a k ∈ N

s.t. ϕk = ϕ. Then, since ϕ /∈ Γ, Tk ∪ {ϕk} is IincΛ and ¬ϕ ∈ Tk+1, so ¬ϕ ∈ Γ. But
then, since I �Λ ϕ ∧ ¬ϕ ⊃ ⊥, Γ ∪ {ϕ} is IincΛ.
So, it has been proved that T = T0 ⊆ Γ and, by (c), (d), Γ is a mIcΛ-theory.

Last two lemmata do guarantee that the model defined next, does exist.

Definition 3.6 Let Λ be any regular modal logic and I be any cΛ-theory. The canon-
ical model MΛ,I for Λ and I is the Kripke q-model, which is defined as the quadruple
〈WΛ,I , NΛ,I , RΛ,I , V Λ,I〉, where:

(i) WΛ,I = {Γ ⊆ L� | Γ : mIcΛ}
(ii) NΛ,I = {Γ ∈WΛ,I | �� ∈ Γ}
(iii) (∀Γ,∆ ∈ WΛ,I)(ΓRΛ,I

∆ iff (∀ϕ ∈ L�)(�ϕ ∈ Γ ⇒ ϕ ∈ ∆))

(iv) (∀p ∈ Φ)(V Λ,I(p) = {Γ ∈WΛ,I | p ∈ Γ})

Frame FΛ,I = 〈WΛ,I, NΛ,I , RΛ,I〉 underlying MΛ,I is called the canonical frame for Λ
and I.

In a case of a normal modal logic Λ, �� ∈ Λ. Hence, every proof I �Λ ϕ is equivalent
to a proof using RN instead of RM and vice versa. Furthermore, by Lem.3.3(iii),
(∀Γ ∈WΛ,I) �� ∈ Γ, hence, by Def.3.6(ii), NΛ,I = WΛ,I . So,
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Fact 3.7 If Λ is a normal modal logic, then NΛ,I = WΛ,I and MΛ,I coincides with the
canonical model defined for normal modal logics (and the corresponding cΛ-theories) in
bibliography.

Now, we come to the key-lemma towards proving that the theory of MΛ,I contains
exactly all formulae, which can be proved from I in Λ:

Lemma 3.8 (Truth Lemma) Let Λ be a regular modal logic and I be a cΛ-theory.
Then, (∀ϕ ∈ L�)(∀Γ ∈WΛ,I)(MΛ,I , Γ � ϕ ⇐⇒ ϕ ∈ Γ)

Proof. By induction on the complexity of ϕ. Induction base follows from Def.3.6(iv)
and ϕ ⊃ ψ – part of induction step follows immediatelly from induction hypothesis using
(i) to (iv) of Lem.3.3. Now, to the �ϕ – case.
MΛ,I , Γ � �ϕ iff (∀∆ ∈WΛ,I)(ΓRΛ,I

∆ ⇒ MΛ,I
∆ � ϕ) ∧ Γ ∈ NΛ,I iff (by Ind.Hyp.)

(∀∆ ∈ WΛ,I)(ΓRΛ,I
∆ ⇒ ϕ ∈ ∆) ∧ Γ ∈ NΛ,I

It suffices to show that this is equivalent to the fact that �ϕ ∈ Γ.
(⇒)
Suppose that �ϕ /∈ Γ and Γ ∈ NΛ,I . Since Γ is a mIcΛ-theory, by Lem.3.3(ii), ¬�ϕ ∈ Γ.
Now, let us define ∆ = {ψ ∈ L� | �ψ ∈ Γ} and Θ = {¬ϕ} ∪ ∆. Suppose, for the sake of
contradiction, that Θ is IincΛ i.e. there exist ψ1, . . . , ψn ∈ Θ s.t. I �Λ ψ1 ∧ . . .∧ψn ⊃ ⊥.

• if n = 1 and ψ1 = ¬ϕ i.e. I �Λ ¬ϕ ⊃ ⊥, then I �Λ � ⊃ ϕ, and, by (RM),
I �Λ �� ⊃ �ϕ. Then, by Lem.3.3(iii), �� ⊃ �ϕ ∈ Γ. But Γ ∈ NΛ,I , so, by
Def.3.6(ii) and Lem.3.3(i), �ϕ ∈ Γ, which is a contradiction, since ¬�ϕ ∈ Γ and Γ

is an IcΛ-theory.

• if ψ1, . . . , ψn ∈ ∆, then I �Λ ψ1 ∧ . . . ∧ ψn ⊃ φ, since ⊥ ⊃ ϕ ∈ PC.
if n > 1 and ψ1, . . . , ψn−1 ∈ ∆ and ψn = ¬ϕ, then I �Λ ψ1 ∧ . . . ∧ ψn−1 ⊃ φ.
So, in both cases, there are ψ1, . . . , ψn ∈ ∆ with n ≥ 1 s.t. I �Λ ψ1 ∧ . . .∧ψn ⊃ ϕ.
Hence, by RM, I �Λ �(ψ1 ∧ . . . ∧ ψn) ⊃ �ϕ (1)
But, I �Λ ψ1 ⊃ (ψ2 ⊃ ψ1 ∧ ψ2), so, by RM, I �Λ �ψ1 ⊃ �(ψ2 ⊃ ψ1 ∧ ψ2), and,
by K, I �Λ �ψ1 ⊃ (�ψ2 ⊃ �(ψ1 ∧ψ2)) i.e. I �Λ �ψ1 ∧�ψ2 ⊃ �(ψ1 ∧ψ2). Hence,
by a trivial induction, I �Λ �ψ1 ∧ . . . ∧ �ψn ⊃ �(ψ1 ∧ . . . ∧ ψn), and by (1),
I �Λ �ψ1 ∧ . . . ∧ �ψn ⊃ �ϕ, so, by Lem.3.3(iii), �ψ1 ∧ . . . ∧ �ψn ⊃ �ϕ ∈ Γ (2)
But, since ψ1, . . . , ψn ∈ ∆, �ψ1, . . . ,�ψn ∈ Γ, therefore, by Lem.3.3(iv), �ψ1∧. . .∧
�ψn ∈ Γ, and finally, by (2) and Lem.3.3(i), �ϕ ∈ Γ, which is again a contradiction.

So, Θ is an IcΛ-theory, and by Lindenbaum’s lemma (3.5), there is a mIcΛ-theory Ξ

s.t. Θ ⊆ Ξ. Hence, ¬ϕ ∈ Ξ, which entails, by Lem.3.3(ii), that ϕ /∈ Ξ.
Furthermore, (∀ψ ∈ L�) if �ψ ∈ Γ, then ψ ∈ ∆ i.e. ψ ∈ Θ i.e. ψ ∈ Ξ. Therefore, by
Def.3.6(iii), ΓRΛ,I

Ξ.
So, the contrapositive was proved.
(⇐)
Suppose that �ϕ ∈ Γ. Then, for any ∆ ∈ WΛ,I , if ΓRΛ,I

∆, then by Def.3.6(iii), ϕ ∈ ∆.
Furthermore, I �Λ ϕ ⊃ �, hence, by RM, I �Λ �ϕ ⊃ ��. Then, by Lem.3.3(iii),
�ϕ ⊃ �� ∈ Γ. But �ϕ ∈ Γ, so, by Lem.3.3(i), �� ∈ Γ, consequently, by Def.3.6(ii),
Γ ∈ NΛ,I .
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Using Truth Lemma 3.8, we can prove (see Appendix A.1) the following characteri-
zation of a useful regular modal logic, namely S5′

R = KT4�B�R

Theorem 3.9 S5′
R is strongly complete with respect to all q-frames, for which (Uq)

holds.

Actually, the following, more general result can be proved, which will be useful in
subsequent sections.

Proposition 3.10 Let Λ be a regular modal logic and I be a cΛ-theory. Then,

(∀ϕ ∈ L�)(MΛ,I � ϕ ⇐⇒ I �Λ ϕ)

Proof. (⇒)
Suppose that I �Λ ϕ. If {¬ϕ} were IincΛ, then, by definition, I �Λ ¬ϕ ⊃ ⊥, which is
a contradiction, so {¬ϕ} is a IcΛ-theory, and, by Lindenbaum’s lemma (3.5), there is a
Γ ∈WΛ,I s.t. ¬ϕ ∈ Γ. Hence, by Lem.3.8, MΛ,I , Γ � ¬ϕ, so, MΛ,I

� ϕ.
(⇐)
Suppose that I �Λ ϕ. Then, by Lem.3.3(iii), (∀Γ ∈ WΛ,I) ϕ ∈ Γ. Hence, by Lem.3.8,
(∀Γ ∈WΛ,I) MΛ,I , Γ � ϕ, so, MΛ,I � ϕ.

Classical modal logics Analogously to regular modal logics, the notion of strong
provabillity from premises in a classical modal logic is defined.

Definition 3.11 If {A0, . . . , An} ⊆ L� is a set of axioms of classical modal logic Λ (i.e.
Λ = A0 . . .AnC is the smallest classical modal logic containing A0, . . . , An) and I ⊆ L�

is a set of premises, then for any formula ϕ we say that there is an RE-proof of ϕ from
premises I in Λ (I �Λ ϕ) iff there is a Hilbert-style proof, where each step of the proof
is either a formula in PC ∪ US(A0) ∪ . . . ∪ US(An) ∪ I or a result of applying MP or
RE to formulas of previous steps and the last formula in this proof is ϕ.

Definition of a theory, which is consistent with a classical modal logic, or I-consistent
with a classical modal logic, or maximal I-consistent with a classical modal logic, is
exactly as for regular modal logics. In fact, an observation of the proofs of lemmata 3.3,
3.4 and 3.5 (Lindenbaum) reveals that the only requirement for Λ is to be a modal logic.
So, they are true for classical modal logics too. Now, let us construct the following model,
for which it will be proved afterwards, that its theory contains exactly all formulae, which
can be proved (by an RE-proof) from premises in a classical modal logic Λ.

Definition 3.12 Let Λ be a classical modal logic and I be a cΛ-theory. The canonical
model NΛ,I for Λ and I is the n-model, which is defined as the triple 〈WΛ,I , EΛ,I , V Λ,I〉,
where:
(i) WΛ,I = {Γ ⊆ L� | Γ : mIcΛ}
(ii) (∀Γ ∈WΛ,I)(∀ϕ ∈ L�)(|ϕ|Λ,I ∈ EΛ,I(Γ) ⇐⇒ �ϕ ∈ Γ)

where |ϕ|Λ,I = {Γ ∈WΛ,I | ϕ ∈ Γ}
(iii) (∀p ∈ Φ)(V Λ,I(p) = {Γ ∈ WΛ,I | p ∈ Γ})
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Again, Lemmata 3.4 and 3.5 guarantee that WΛ,I �= ∅, but it must be proved that EΛ,I

in (ii) is well-defined, i.e. that for anymIcΛ-theory Γ and (∀ϕ, ψ ∈ L�), if |ϕ|Λ,I = |ψ|Λ,I ,
then �ϕ ∈ Γ ⇐⇒ �ψ ∈ Γ. This will be established by proving following Lemma.

Lemma 3.13 |ϕ|Λ,I ⊆ |ψ|Λ,I ⇒ I �Λ ϕ ⊃ ψ

Proof. Suppose that |ϕ|Λ,I ⊆ |ψ|Λ,I . Then, for any mIcΛ-theory Γ, Γ ∈ |ϕ|Λ,I ⇒
Γ ∈ |ψ|Λ,I , i.e., by Def.3.12(ii), ϕ ∈ Γ ⇒ ψ ∈ Γ, hence, ϕ /∈ Γ or ψ ∈ Γ, so, by Lem.3.3(ii),
¬ϕ ∈ Γ or ψ ∈ Γ, therefore, by Lem.3.3(ii),(iv), ¬ϕ ∨ ψ ∈ Γ, hence, ϕ ⊃ ψ ∈ Γ. Now,
if {¬(ϕ ⊃ ψ)} were an IcΛ-theory, then, by Lindenbaum’s lemma, it would exist a
mIcΛ-theory Γ s.t. ¬(ϕ ⊃ ψ) ∈ Γ, hence, since Γ is consistent, ϕ ⊃ ψ /∈ Γ, which is a
contradiction. Therefore, {¬(ϕ ⊃ ψ)} is an IincΛ-theory, i.e. I �Λ ϕ ⊃ ψ.

So, if |ϕ|Λ,I = |ψ|Λ,I , then, by the previous Lemma, I �Λ ϕ ⊃ ψ and I �Λ ψ ⊃ ϕ, hence,
I �Λ ϕ ≡ ψ, and, with an RE-step in the proof, I �Λ �ϕ ≡ �ψ, so, by Lem.3.3(iii),
�ϕ ≡ �ψ ∈ Γ, hence, by Lem.3.3(i), �ϕ ∈ Γ ⇐⇒ �ψ ∈ Γ. So, the well-definition of
EΛ,I is proved.

Now, a ‘Truth Lemma’ for canonical models of classical logics can be easily proved.

Lemma 3.14 (Truth Lemma) Let Λ be a classical modal logic and I be a cΛ-theory.
Then, (∀ϕ ∈ L�)(∀Γ ∈WΛ,I)(NΛ,I , Γ � ϕ ⇐⇒ ϕ ∈ Γ)

Proof. By induction on the complexity of ϕ. Ind.Base follows from Def.3.6(iv) and
ϕ ⊃ ψ – part of Ind.Step follows immediatelly from Ind.Hypothesis using (i) to (iv) of
Lem.3.3. Now, to the �ϕ – case.

Firstly, let ∆ be any mIcΛ-theory. Then, ∆ ∈ V (ϕ) ⇐⇒ NΛ,I ,∆ � ϕ
Ind.Hyp.⇐⇒ ϕ ∈ ∆

⇐⇒ ∆ ∈ |ϕ|Λ,I . Hence, V (ϕ) = |ϕ|Λ,I (1)

So, �ϕ ∈ Γ ⇐⇒ |ϕ|Λ,I ∈ EΛ,I(Γ)
(1)⇐⇒ V (ϕ) ∈ EΛ,I(Γ) ⇐⇒ NΛ,I , Γ � �ϕ.

Exactly as in the proof of Prop.3.10, but using Truth Lemma 3.14 instead of Truth
Lemma 3.8, we come up with the following result (for classical modal logics this time).

Proposition 3.15 Let Λ be a classical modal logic and I be a cΛ-theory. Then,

(∀ϕ ∈ L�)(NΛ,I � ϕ ⇐⇒ I �Λ ϕ)

4 RM-stable theories

Having set the appropriate background, we proceed to define our first variant of a stable
belief set by taking the most obvious road: substituting RMc for RNc in Stalnaker’s
definition.
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Definition 4.1 A theory S ⊆ L� is called RM-stable iff

(i) PC ⊆ S and S is closed under MP

(ii) S is closed under rule RMc.
ϕ⊃ψ ∈ S

�ϕ⊃�ψ ∈ S

(iii) S is closed under rule NIc.
ϕ /∈ S

¬�ϕ ∈ S

The first observation is that the axiom �� plays here a role similar to the one encoun-
tered in non-normal modal logics, where �� eliminates queer worlds and leads to the
realm of normal modal logics. Addition of �� to an RM-stable set leads to the classical
Stalnaker notion.

Fact 4.2 A theory S is a Stalnaker stable set iff it is an RM-stable set containing ��.

From the proof-theoretic viewpoint, the following result shows that RM-stable sets stand
to the regular logic S5′

R, as Stalnaker (RN-)stable sets stand to S5. The following
Theorem should be compared to Theor.2.3(i).

Theorem 4.3 Let S be an RM-stable set.

(i) K, T, 5� are contained in S.

(ii) S is closed under strong S5′
R provability, i.e. S = {ϕ ∈ L� | S �S5′

R
ϕ}.

(iii) If S is consistent, then it is a consistent with S5′
R theory (cS5′

R-theory).

Proof.
(i) Consider any ϕ, ψ ∈ L�.

• If ¬�(ϕ ⊃ ψ) ∈ S, then �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ) ∈ S.
If ¬�(ϕ ⊃ ψ) /∈ S, then, by NIc, ϕ ⊃ ψ ∈ S, and, by RMc, �ϕ ⊃ �ψ ∈ S, so
again, �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ) ∈ S.

• If ¬�ϕ ∈ S, then, by Def.4.1(i), �ϕ ⊃ ϕ ∈ S.
If ¬�ϕ /∈ S, then, by NIc, ϕ ∈ S, and again, by Def.4.1(i), �ϕ ⊃ ϕ ∈ S.

• If �� ⊃ �ϕ ∈ S, then, by Def.4.1(i), (�� ⊃ �ϕ) ∨ (�� ⊃ �¬�ϕ) ∈ S.
If �� ⊃ �ϕ /∈ S, then, by RMc, � ⊃ ϕ /∈ S, hence, by Def.4.1(i), ϕ /∈ S, so, by
NIc, ¬�ϕ ∈ S, and again by Def.4.1(i), � ⊃ ¬�ϕ ∈ S, consequently, by RMc,
�� ⊃ �¬�ϕ ∈ S, and finally, by Def.4.1(i), (�� ⊃ �ϕ) ∨ (�� ⊃ �¬�ϕ) ∈ S.
Therefore, in any case, (�� ⊃ �ϕ) ∨ (�� ⊃ �¬�ϕ) ∈ S. But it is easy to see
that (�� ⊃ �ϕ) ∨ (�� ⊃ �¬�ϕ) ≡ (¬�ϕ ∧ �� ⊃ �¬�ϕ) ∈ PC. Therefore, by
Def.4.1(i), ¬�ϕ ∧ �� ⊃ �¬�ϕ ∈ S.

(ii)
It is obvious that, if ϕ ∈ S, then S �S5′

R
ϕ. Conversely, suppose that S �S5′

R
ϕ. Then,

since S5′
R = KT5� (see Lem.A.2), there is a Hilbert-style proof, in which every step

is a formula of PC ∪ K ∪ T ∪ 5� ∪ S or a result of applying MP or RM to formulas
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of previous steps. It will be proved by induction on the proof’s length, that ϕ ∈ S.
For Ind.Basis, if ϕ ∈ PC, then, by Def.4.1(i), ϕ ∈ S; if ϕ ∈ K ∪ T ∪ 5�, then, by (i),
ϕ ∈ S. For Ind.Step, if ψ and ψ ⊃ ϕ are formulas of the proof in previous steps, then,
by Ind.Hypothesis, ψ, ψ ⊃ ϕ ∈ S and so, by Def.4.1(i), ϕ ∈ S; if ϕ = �ψ ⊃ �χ and
ψ ⊃ χ is a formula of the proof in a previous step, then, by Ind.Hypothesis, ψ ⊃ χ ∈ S
and so, by RMc, ϕ ∈ S.
(iii)
Suppose that S is an incS5′

R-theory. Then S �S5′
R
⊥, hence, by (ii), ⊥ ∈ S, and so,

because ⊥ ⊃ ⊥ ∈ PC, by definition, S is inconsistent.

Representation theory for RM-stable sets. We can provide model-theoretic char-
acterizations of RM-stable theories in terms of q-models and n-models. We can set
RM-stable theories in an one-to-one-correspondence to theories of q-models consisting
of a cluster of normal worlds ‘seeing’ every non-normal world (if any). We can also
characterize RM-stable sets as the set of beliefs held within a normal world in such a
q-model.

Theorem 4.4 Let S ⊆ L� be a consistent theory. S is RM-stable iff there is a q-model
M = 〈W,N,R, V 〉 satisfying property (Uq) s.t. Th(M) = S.

Proof. (⇒) Since S is RM-stable and consistent, by Theor.4.3(iii), S is a cS5′
R-theory.

So, model MS5′
R,S does exist and, by Prop.3.10, Th(MS5′

R,S) = {ϕ ∈ L� | S �S5′
R
ϕ}.

Consequently, by Theor.4.3(ii), Th(MS5′
R,S) = S.

Now, consider any Γ ∈ NS5′R,S and ∆ ∈ W S5′R,S. For any ψ ∈ L� s.t. �ψ ∈ Γ, since Γ

is ScS5′R, ¬�ψ /∈ Γ. Suppose now that ¬�ψ were in S. Then, S �S5′
R
¬�ψ, hence, by

Lem.3.3(iii), ¬�ψ ∈ Γ, which is a contradiction. So ¬�ψ /∈ S. But, S is RM-stable, so,
by NIc, ψ ∈ S, hence, S �S5′

R
ψ, consequently, again by Lem.3.3(iii), ψ ∈ ∆. So, by

Def.3.6, ΓRS5′
R,S∆.

(⇐)
For Def.4.1(i). Th(M) contains every tautology in L� and is closed under MP.
For Def.4.1(ii)(RMc). Let ϕ, ψ ∈ L� s.t. ϕ ⊃ ψ ∈ Th(M) and w ∈W s.t. M, w � �ϕ.
Then, w ∈ N and (∀v ∈ W ) wRv ⇒ M, v � ϕ. Therefore, since ϕ ⊃ ψ ∈ Th(M),
M, v � ψ, hence, M, w � �ψ. So, �ϕ ⊃ �ψ ∈ Th(M).
For Def.4.1(iii)(NIc). Let ϕ ∈ L� s.t. ϕ /∈ Th(M) i.e. there is v ∈ W s.t. M, v � ϕ.
Let now be any w ∈ W . If w ∈ W \N , then, by definition of q-models, M, w � ¬�ϕ.
If w ∈ N , then again, since wRv and M, v � ϕ, M, w � ¬�ϕ.
So, ¬�ϕ ∈ Th(M).

The following characterization is the parallel to the characterization of Stalnaker stable
sets in terms of beliefs held ‘inside’ a KD45 situation, and as such, seems amenable to
generalization in multi-agent situations (as argued convincingly in [Hal97b]).

Proposition 4.5 Let S ⊆ L� be a consistent theory. S is RM-stable iff there is
a q-model M = 〈W,N,R, V 〉 and u ∈ N s.t. S = {ϕ ∈ L� | M, u � �ϕ} and
(∀w ∈ N)(∀v ∈W \ {u})wRv.

13



Proof. Firstly, it will be proved that, if M′ = 〈W ′, N ′, R′, V ′〉 is a q-model s.t. (∀w ∈
N ′)(∀v ∈W ′)wR′v and M = 〈W,N,R, V 〉 is another q-model s.t. W = W ′∪{u} (where
u /∈ W ′), N = N ′ ∪ {u}, R = R′ ∪ ({u} ×W ′) and V = V ′, then, Th(M′) = {ϕ ∈
L� | M, u � �ϕ}.
Proof: Since (∀w ∈ W ′)¬wRu, it can be proved (by a trivial induction on ϕ) that
(∀w ∈W ′)M′, w � ϕ iff (∀w ∈W ′)M, w � ϕ, hence, ϕ ∈ Th(M′) iff M, u � �ϕ.
Now, Theor.4.4 is applicable (on M′), and the proof is complete.

By using again Theor.4.4, we obtain a representation for RM-stable sets, in terms of
neighborhood semantics.

Proposition 4.6 Let S ⊆ L� be a consistent theory. S is RM-stable iff there is an
n-model N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈W )(E(w) = ∅ or E(w) = {W}).

Proof. (⇒) By Theor.4.4, there is a q-model M = 〈W,N,R, V 〉 s.t. Th(M) = S
and (∀w ∈ N)(∀v ∈ W )wRv. Consider now NM = 〈W,E, V 〉, the equivalent n-
model produced by M (see Def.2.1). By Prop.2.2 follows immediately that Th(NM) =
Th(M) = S. Furthermore, if w ∈ W \ N , then E(w) = ∅ and if w ∈ N , then
E(w) = {X ⊆W | Rw ⊆ X} = {W}, since (∀v ∈W )wRv.
(⇐)
For Def.4.1(i). Th(N) contains every tautology in L� and is closed under (MP).
For Def.4.1(ii)(RMc). Let ϕ, ψ ∈ L� s.t. ϕ ⊃ ψ ∈ Th(N) and w ∈ W s.t. N, w � �ϕ.
Then, V (ϕ) ∈ E(w), hence, E(w) = {W} and V (ϕ) = W . Therefore, since ϕ ⊃ ψ ∈
Th(N), (∀w ∈ W )N, w � ψ, i.e. V (ψ) = W , so, V (ψ) ∈ E(w), hence, N, w � �ψ. So,
�ϕ ⊃ �ψ ∈ Th(N).
For Def.4.1(iii)(NIc). Let ϕ ∈ L� s.t. ϕ /∈ Th(N) i.e. V (ϕ) �= W . Let now be
any w ∈ W . E(w) = ∅ or E(w) = {W}, so in both cases, V (ϕ) /∈ E(w). Hence,
N, w � ¬�ϕ. So, ¬�ϕ ∈ Th(N).

Furthermore, Theor.2.3(ii) comes now as an immediate consequence of Theor.4.4.

Corollary 4.7 A consistent theory is stable iff it is a theory of a standard Kripke
model (without impossible worlds), equipped with a universal relation.

Proof. (⇒)
Let S be a consistent and stable theory. By Fact.4.2, it is RM-stable and contains
��, so, S �S5′

R
��, hence, by Lem.3.3(iii), for any mScS5′

R-theory Γ, �� ∈ Γ, so,
NS5′

R,S = W S5′
R,S. Consequently, by Theor.4.4, Th(MS5′

R,S) = S and MS5′
R,S has a

universal relation.
(⇐)
Let M = 〈W,R, V 〉 be a universal, standard Kripke model. Then, Mq = 〈W,W,R, V 〉
is a q-model, and by definition of truth in q-models, Th(M) = Th(Mq). But, by
Theor.4.4 (applied for Mq), Th(Mq) is RM-stable. Furthermore, since M is standard,
�� ∈ Th(M), hence, by Fact.4.2, Th(M) is stable.
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Analogously, Theor.2.3(iii) comes as an immediate consequence of Prop.4.5. Finally, as
a result of Prop.4.6, we obtain immediately the following representation of Stalnaker
stable sets, in terms of n-models, given for the first time.

Proposition 4.8 Let S ⊆ L� be a consistent theory. S is stable iff there is an n-model
N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈W )E(w) = {W}.

5 RE-stable theories

Following a typical route, it is tempting to attempt weakening further the positive
introspection condition. Rule REc seems the obvious candidate, but we have soon to
face the obvious problem that the introspective reasoner should be able to distinguish
tautologies as equivalent formulae. We have then to consider the addition of �� and
this leads us to the following generic notion:

Definition 5.1 A theory S ⊆ L� is called RE-stable iff

(i) PC ⊆ S and S is closed under MP

(ii) �� ∈ S

(iii) S is closed under rule REc.
ϕ≡ψ ∈ S

�ϕ≡�ψ ∈ S

With proofs identical to Theorem’s 4.3(ii) and (iii), we can conclude that RE-stable
theories are consistent with strong provability in classical modal logics.

Proposition 5.2 Let S be an RE-stable set containing every instance of axiomatic
schemes A0, . . . ,An.

(i) S is closed under strong A0 . . .AnC provability, i.e. S = {ϕ ∈ L� | S �A0...A1C
ϕ}.

(ii) If S is consistent, then it is a consistent with A1 . . .AnC theory (cA1 . . .AnC-
theory)

But, it comes that by adding ��, we get nothing less than RNc, as in the original
definition.

Lemma 5.3 Any RE-stable theory is closed under RNc.

Proof. Let S be an RE-stable theory and ϕ ∈ S. Since ϕ ⊃ (� ⊃ ϕ) ∈ S, by
Def.5.1(i), � ⊃ ϕ ∈ S. Furthermore, ϕ ⊃ � ∈ S, so, by Def.5.1(i), � ≡ ϕ ∈ S, hence,
by REc, �� ≡ �ϕ ∈ S, and, by Def.5.1(i), �� ⊃ �ϕ ∈ S, and finally, by Def.5.1(ii)
and (i), �ϕ ∈ S.

This means we have to proceed to different notions of negative introspection and by
doing so, we obtain two different notions of RE-stable sets.
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5.1 REw-stable theories

We introduce the following context rule for negative introspection:

NIc−w.
¬ϕ /∈ S

�ϕ ∈ S ∨ ¬�ϕ ∈ S

which ‘says’ that if ϕ is consistent with what is believed, something is known about it.

Definition 5.4 An RE-stable theory S is called REw-stable iff it is closed under NIc−w.

We readily prove the presence of axiom w5 and then, we can obtain a representation
theorem for REw-stable theories in terms of n-models.

Lemma 5.5 Every instance of axiomatic scheme w5 is contained in any REw-stable
theory.

Proof. Let S be an REw-stable theory and ϕ ∈ L�.
If ¬ϕ ∈ S or �ϕ ∈ S, then, by Def.5.1(i), (ϕ ∧ ¬�ϕ) ⊃ �¬�ϕ ∈ S.
If ¬ϕ /∈ S and �ϕ /∈ S, then, by NIc−w, ¬�ϕ ∈ S, and , by Lem.5.3, �¬�ϕ ∈ S, hence
again, (ϕ ∧ ¬�ϕ) ⊃ �¬�ϕ ∈ S.

Theorem 5.6 Let S ⊆ L� be a consistent theory. S is REw-stable iff there is an
n-model N = 〈W,E, V 〉 s.t. Th(N) = S and

(∀w ∈W )W ∈ E(w) (1) and (∀v ∈W )(E(v) \ E(w) ⊆ {∅}) (2)

Proof. (⇒) Since S is REw-stable, by Lem.5.5, S contains w5, hence, since S is
RE-stable and consistent, by Prop.5.2(ii), S is a cw5C-theory. So, model Nw5C ,S does
exist. For simplicity, let us denote Nw5C ,S as N = 〈W,E, V 〉. Then, by Prop.3.15,
Th(N) = {ϕ ∈ L� | S �w5C

ϕ}. Consequently, by Prop.5.2(i), Th(N) = S. Now, fix
any Γ ∈W .
(1) By Def.5.1(i), � ∈ S, so, by Lem.3.3(iii), (∀∆ ∈ W )� ∈ ∆, hence, since every ∆

is a mScw5C-theory, |�|w5C ,S = W . But, by Def.5.1(ii), �� ∈ S, i.e., by Lem.3.3(iii),
�� ∈ Γ, hence, by Def.3.12(ii), |�|w5C ,S ∈ E(Γ). Consequently, W ∈ E(Γ).
(2) Consider any ∆ ∈ W and let Y ⊆ W s.t. Y ∈ E(∆) but Y /∈ E(Γ). Then, by
Def.3.12(ii), there must be a ϕ ∈ L� s.t. Y = |ϕ|w5C ,S and �ϕ ∈ ∆ (I)
But, since Y /∈ E(Γ), �ϕ /∈ Γ, hence, by Lem.3.3(iii), �ϕ /∈ S (II)
Suppose now, for the sake of contradiction, that Y �= ∅. Then, there is a Ξ ∈ Y .
Since Y = |ϕ|w5C ,S, ϕ ∈ Ξ, and since Ξ is consistent, ¬ϕ /∈ Ξ, so, by Lem.3.3(iii),
¬ϕ /∈ S (III)
Now, (II) and (III) imply by NIc−w, ¬�ϕ ∈ S, therefore, again by Lem.3.3(iii),
¬�ϕ ∈ ∆, hence, by (I), ∆ is inconsistent, which is a contradiction. So, Y = ∅.
(⇐)
For Def.5.1(i). Th(N) contains every tautology in L� and is closed under (MP).
For Def.5.1(ii). Since V (�) = W and, by (1), (∀w ∈W )W ∈ E(w), �� ∈ Th(N).
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For Def.5.1(iii)(REc). Let ϕ, ψ ∈ L� s.t. ϕ ≡ ψ ∈ Th(N). Then, V (ϕ) = V (ψ), hence,
(∀w ∈W ) (V (ϕ) ∈ E(w) ⇐⇒ V (ψ) ∈ E(w)), consequently, �ϕ ≡ �ψ ∈ Th(N).
For Def.5.4(NIc−w). Let ϕ ∈ L� s.t. ¬ϕ /∈ Th(N) and �ϕ /∈ Th(N). Then, V (¬ϕ) �= W
and (∃w ∈ W ) N, w � �ϕ, i.e. V (ϕ) �= ∅ and (∃w ∈ W )V (ϕ) /∈ E(w). Now,
suppose for the sake of contradiction, that there is a v ∈ W s.t. V (ϕ) ∈ E(v). Then,
V (ϕ) ∈ E(v) \ E(w), hence, by (2), V (ϕ) = ∅, which is a contradiction. So, (∀v ∈ W )
V (ϕ) /∈ E(v), i.e. (∀v ∈W ) N, v � ¬�ϕ, hence ¬�ϕ ∈ Th(N).

5.2 REp-stable theories

We can alternatively consider the following rule for negative introspection:

NIc−p.
ϕ /∈ S ∧ ¬ϕ /∈ S

¬�ϕ ∈ S

which ‘says’ that if nothing is known to hold about ϕ, then it is known that ϕ is not
known.

Definition 5.7 An RE-stable theory S is called REp-stable iff it is closed under NIc−p.

This notion is stronger than the previous one and contains every instance of axiom p5,
introduced in [KZ09].

If S is an REp-stable theory, then �ϕ /∈ S implies, by Lem.5.3, ϕ /∈ S, hence,
¬ϕ /∈ S and �ϕ /∈ S imply ¬ϕ /∈ S and ϕ /∈ S, so, by NIc−p, ¬ϕ /∈ S and �ϕ /∈ S
imply ¬�ϕ ∈ S. This proves the following.

Fact 5.8 Every REp-stable theory is REw-stable.

Lemma 5.9 Every instance of axiomatic scheme p5 is contained in any REp-stable
theory.

Proof. Let S be an REp-stable theory and ϕ ∈ L�.
If �ϕ ∈ S or �¬ϕ ∈ S, then, by Def.5.1(i), (¬�ϕ ∧ ¬�¬ϕ) ⊃ �¬�ϕ ∈ S.
If �ϕ /∈ S and �¬ϕ /∈ S, then, by Lem.5.3, ϕ /∈ S and ¬ϕ /∈ S, so, by NIc−p, ¬�ϕ ∈ S,
and, by Lem.5.3, �¬�ϕ ∈ S, hence again, (¬�ϕ ∧ ¬�¬ϕ) ⊃ �¬�ϕ ∈ S.

Furthermore, we can prove a representation theorem for REp-stable sets.

Theorem 5.10 Let S ⊆ L� be a consistent theory. S is REp-stable iff there is an
n-model N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈ W )(E(w) = {W} or E(w) =
{∅,W}).

Proof. (⇒) Since S is REp-stable, by Lem.5.9, S contains p5, hence, since S is RE-
stable and consistent, by Prop.5.2(ii), S is a cp5C-theory. So, model Np5C ,S does exist.
For simplicity, let us denote Np5C ,S as N = 〈W,E, V 〉. Then, by Prop.3.15, Th(N) =
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{ϕ ∈ L� | S �p5C
ϕ}. Consequently, by Prop.5.2(i), Th(N) = S.

Now, let Γ ∈W . Exactly as in Theor.5.6(1), one can prove that W ∈ E(Γ).
Consider now any Y ∈ E(Γ) s.t. Y �= W . Then, by Def.3.12(ii), there must be a ϕ ∈ L�

s.t. Y = |ϕ|p5C ,S and �ϕ ∈ Γ (I)
But, since |ϕ|p5C ,S ⊂ W , there is a mScp5C-theory ∆ s.t. ∆ /∈ |ϕ|p5C ,S, hence, ϕ /∈ ∆,
consequently, by Lem.3.3(iii), ϕ /∈ S (II)
Suppose now, for the sake of contradiction, that Y �= ∅. Then, there is a Ξ ∈ Y .
Since Y = |ϕ|p5C ,S, ϕ ∈ Ξ, and since Ξ is consistent, ¬ϕ /∈ Ξ, so, by Lem.3.3(iii),
¬ϕ /∈ S (III)
Now, (II) and (III) imply by NIc−p, ¬�ϕ ∈ S, therefore, again by Lem.3.3(iii), ¬�ϕ ∈
Γ, hence, by (I), Γ is inconsistent, which is a contradiction. So, Y = ∅.
(⇐)
Properties (i), (ii) and (iii)(REc) in Def.5.1 can be proved exactly as in Theor.5.6. So,
let us prove property NIc−p (of Def.5.7). Let ϕ ∈ L� s.t. ϕ /∈ Th(N) and ¬ϕ /∈ Th(N).
Then, V (ϕ) �= W and V (ϕ) �= ∅, hence, for any w ∈W , since E(w) = {W} or E(w) =
{∅,W}, V (ϕ) /∈ E(w), consequently, (∀w ∈W ) N, w � ¬�ϕ, hence ¬�ϕ ∈ Th(N).

Remark 5.11 If (∀w ∈ W )(E(w) = {W} or E(w) = {∅,W}), then E satisfies
properties (1) and (2) of Theor.5.6. So, using Theor.5.10 and Theor.5.6, we see again
that every REp-stable theory is REw-stable.

Theorem 5.10 and Fact 5.8 allow us to prove that REp-stable (and hence, REw-stable)
theories do not suffer from the presence of all known epistemic axioms.

Corollary 5.12 There is an REp-stable theory (which is also REw-stable), which does
not contain an instance of K, of T, of 4 and of 5.

Proof. Consider the n-model N = 〈W,E, V 〉 where W = {w, v}, E(w) = {∅,W},
E(v) = {W}, V (p) = ∅ and V (q) = {w}. Then, by Theor.5.10, Th(N) is REp-stable.
Furthermore,

• V (p ⊃ q) = W ∈ E(w), V (p) ∈ E(w) but V (q) /∈ E(w), hence N, w � �(p ⊃ q)
∧�p ∧ ¬�q, therefore (�p ∧ �(p ⊃ q)) ⊃ �q /∈ Th(N).

• V (p) ∈ E(w) but w /∈ V (p), hence N, w � �p ∧ ¬p, therefore �p ⊃ p /∈ Th(N).

• V (p) ∈ E(w) but {w} /∈ E(w), hence, {u ∈ W | V (p) ∈ E(u)} /∈ E(w), so,
V (�p) /∈ E(w), i.e. N, w � �p ∧ ¬��p, therefore �p ⊃ ��p /∈ Th(N).

• V (p) /∈ E(v) but {v} /∈ E(v), hence, W \ {u ∈ W | V (p) ∈ E(u)} /∈ E(v), so,
V (¬�p) /∈ E(v), i.e. N, w � ¬�p ∧ ¬�¬�p, therefore ¬�p ⊃ �¬�p /∈ Th(N).
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6 Related Work - Future Research

The notion of a stable belief set has been very useful in modal nonmonotonic reasoning.
Investigations on stable sets have mainly focused on identifying their technical proper-
ties and representing them with the aid of model-theoretic constructions known from
classical modal logic. It seems natural however to investigate, both from the logician’s
and the KR engineer’s viewpoint, what can be obtained by loosening the conditions
in the original definition of R. Stalnaker. To the best of our knowledge, it is the first
time that notions of stable sets are investigated by varying the positive and negative
introspection closure conditions. Up to now, there have been approaches which build
belief sets by changing classical logic in condition (i) to a weaker one (intuitionistic logic)
[ACP97] or generalizing the notion of stability in a way somewhat related to the second
question of our introduction [Jas91].

The basic motivation of the research reported in our paper, is to define more plausible
notions of an epistemic state and the ultimate goal is to employ these notions in new
mechanisms for nonmonotonic modal logics, à la McDermott and Doyle. The latter
goal is the first step in the roads of future research, along with the investigation on the
assessment of epistemic states which emerge if we adopt even weaker notions of positive
introspection, for instance by employing a context-dependent version of Oscar Becker’s
rule which has been employed in the study of modal systems which go some way towards
solving the logical omniscience problem [Fit93].

A Appendix

A.1 Regular Modal Logic S5′
R

Firstly, let us point out that although any regular modal logic Λ is closed under uniform
substitution (US) and every proof in Λ does not contain any US-step, one can prove
(see final part of this Appendix) that

Lemma A.1 (∀ϕ ∈ L�)(�Λ ϕ ⇐⇒ ϕ ∈ Λ)

We remind following definitions: 5� = US(¬�p∧�� ⊃ �¬�p) and S5′
R = KT4�B�R.

Then,

Lemma A.2 S5′
R = KT5�R

Proof. By Lem.A.1, we can work with syntactical proofs.
(⊆)

Following proof shows that �KT5�R
B�

1. ϕ ⊃ ¬�¬ϕ (T)
2. ϕ ∧ �� ⊃ ¬�¬ϕ ∧ �� (1. PC)
3. ¬�¬ϕ ∧ �� ⊃ �¬�¬ϕ (5�)
4. ϕ ∧ �� ⊃ �¬�¬ϕ (2. 3. PC)
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Next proof shows that �KT5�R
4�

1. ϕ ⊃ � (PC)
2. �ϕ ⊃ �� (1. RM)
3. �ϕ ⊃ �ϕ ∧ �� (2. PC)
4. �ϕ ⊃ ¬�¬�ϕ (T)
5. �ϕ ∧ �� ⊃ ¬�¬�ϕ ∧ �� (4. PC)
6. ¬�¬�ϕ ∧ �� ⊃ �¬�¬�ϕ (5�)
7. �ϕ ∧ �� ⊃ �¬�¬�ϕ (5. 6. PC)
8. �ϕ ⊃ �¬�¬�ϕ (3. 7. PC)
9. ¬�¬�ϕ ⊃ (�� ⊃ �ϕ) (5�)
10. �¬�¬�ϕ ⊃ �(�� ⊃ �ϕ) (9. RM)
11. �ϕ ⊃ �(�� ⊃ �ϕ) (8. 10. PC)

(⊇)

Following proof shows that �KT4�B�R
5�

1. (�� ⊃ �ϕ) ⊃ ¬¬(�� ⊃ �ϕ) (PC)
2. �(�� ⊃ �ϕ) ⊃ �¬¬(�� ⊃ �ϕ) (1. RM)
3. ¬�¬¬(�� ⊃ �ϕ) ⊃ ¬�(�� ⊃ �ϕ) (2. PC)
4. �¬�¬¬(�� ⊃ �ϕ) ⊃ �¬�(�� ⊃ �ϕ) (3. RM)
5. ¬(�� ⊃ �ϕ) ∧ �� ⊃ �¬�¬¬(�� ⊃ �ϕ) (B�)
6. ¬(�� ⊃ �ϕ) ∧ �� ⊃ �¬�(�� ⊃ �ϕ) (5. 4. PC)
7. ¬�ϕ ∧ �� ⊃ ¬(�� ⊃ �ϕ) ∧ �� (PC)
8. ¬�ϕ ∧ �� ⊃ �¬�(�� ⊃ �ϕ) (7. 6. PC)
9. ¬�(�� ⊃ �ϕ) ⊃ ¬�ϕ (4�)
10. �¬�(�� ⊃ �ϕ) ⊃ �¬�ϕ (9. RM)
11. ¬�ϕ ∧ �� ⊃ �¬�ϕ (8. 10. PC)

Furthermore, for a q-frame F = 〈W,N,R〉, we employ following properties:

(Eq) (∀w, v ∈ N)(∀u ∈W )(wRv ∧ wRu⇒ vRu)

(ERq) (R is an equivalence relation in N and
(∀w ∈ N)(∀u ∈W \N)(wRu⇒ (∀v ∈ [w]R)vRu) 3

Then, following correspondence results can be proved.

Proposition A.3

(i) F � 5� ⇐⇒ (Eq) holds for F

(ii) F � T ⇐⇒ F is reflexive in N

Proof.
(i)(⇒)
The contrapositive will be proved. Suppose that (∃w, v ∈ N)(∃u ∈ W )(wRv ∧ wRu ∧
¬vRu). Now, let V be a valuation s.t. V (p) = {s ∈ W | vRs}. Then, 〈F, V 〉, v � �p,

3[w]R is the equivalence class of w, i.e. [w]R = {v ∈ N | wRv}.
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hence, since wRv, 〈F, V 〉, w � ¬�¬�p. Furthermore, since ¬vRu, 〈F, V 〉, u � ¬p, so,
since wRu, 〈F, V 〉, w � ¬�p. But w ∈ N , so, 〈F, V 〉, w � ��. Putting all together:
〈F, V 〉, w � ¬�p ∧ �� ∧ ¬�¬�p.
(⇐)
Let ϕ be a formula, V a valuation and w a world s.t. 〈F, V 〉, w � ��∧¬�¬�ϕ. Then,
w ∈ N and there is a v ∈ W s.t. wRv and 〈F, V 〉, v � �ϕ. But then, v ∈ N . Consider
now any u ∈ W s.t. wRu. Since wRv and w, v ∈ N , by (Eq), vRu, therefore, since
〈F, V 〉, v � �ϕ, 〈F, V 〉, u � ϕ. Hence, 〈F, V 〉, w � �ϕ, i.e. 〈F, V 〉, w � �� ∧ ¬�¬�ϕ ⊃
�ϕ.
(ii)(⇒)
The contrapositive will be proved. Suppose that (∃w ∈ N)¬wRw. Now, let V be a
valuation s.t. V (p) = W \ {w}. Then of course, 〈F, V 〉, w � ¬p. Consider now any
v ∈ W s.t. wRv. If 〈F, V 〉, v � ¬p, then v = w, hence wRw, which is a contradiction.
So, 〈F, V 〉, v � p, and since w ∈ N , 〈F, V 〉, w � �p.
(⇐)
Let ϕ be a formula, V a valuation and w a world s.t. 〈F, V 〉, w � �ϕ. Then, w ∈ N
and since F is reflexive in N , wRw, hence 〈F, V 〉, w � ϕ, i.e. 〈F, V 〉, w � �ϕ ⊃ ϕ.

Corollary A.4 F � T ∧ 5� ⇐⇒ (ERq) holds for F

Proof. By Prop.A.3, it suffices to show

(Eq) holds for F and F is reflexive in N ⇐⇒ (ERq) holds for F

(⇒)
Reflexivity in N is guaranteed. For symmetry in N , consider any w, v ∈ N s.t. wRv.
Since wRw, by (Eq), vRw. For transitivity in N , consider any w, v, u ∈ N s.t. wRv and
vRu. Then, by symmetry, vRw, and by (Eq), wRu. Hence, R is an equivalence relation
in N .
Let now w be a normal world and u be a non-normal world s.t. wRu. Furthermore,
consider any v ∈ [w]R, i.e. v ∈ N and wRv. Then, by (Eq), vRu.
(⇐)
Since R is an equivalence relation in N , F is reflexive in N . Consider now any w, v ∈ N
and u ∈ W s.t. wRv and wRu. If u ∈ N , then, since wRv, by symmetry, vRw, and
since wRu, by transitivity, vRu. If u ∈ W \ N , then, since v ∈ [w]R, by (ERq), again
vRu. Hence, (Eq) holds for F.

Next two lemmas will be helpful for proving the completeness result for S5′
R. Fix

any regular modal logic Λ. Then,

Lemma A.5

(i) If Λ is consistent, then ∅ is a cΛ-theory.

(ii) I ∪ {¬ϕ} : ∅incΛ ⇒ I �Λ ϕ ⇒ I ∪ {¬ϕ} : incΛ

(iii) If I is a ∅cΛ-theory, then it is a consistent theory.
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Proof.
(i)
If ∅ is an incΛ-theory, then, �Λ ⊥, consequently, by Lem.A.1, ⊥ ∈ Λ, i.e., since ⊥ ⊃
⊥ ∈ PC, Λ is inconsistent.
(ii)
Supposed that I ∪ {¬ϕ} is ∅incΛ, there are n > 0 and ϕ1, . . ., ϕn ∈ I s.t. �Λ ϕ1∧ . . .
∧ϕn ∧¬ϕ ⊃ ⊥ or �Λ ϕ1∧ . . . ∧ϕn ⊃ ⊥ or �Λ ¬ϕ ⊃ ⊥. Hence, I �Λ ϕ1∧ . . . ∧ϕn ⊃ ϕ
or I �Λ ϕ. Now, by adding to the first proof, formulas ϕ1, . . ., ϕn and by applying MP
n times, we get again a proof of ϕ from I in Λ (I �Λ ϕ).
Furthermore, I �Λ ϕ implies that I ∪ {¬ϕ} �Λ ϕ, and since, I ∪ {¬ϕ} �Λ ¬ϕ, it follows
that I ∪ {¬ϕ} �Λ ⊥, i.e. I ∪ {¬ϕ} : incΛ.
(iii)
If I is an inconsistent theory, then there are n > 0 and ϕ1, . . ., ϕn ∈ I s.t. ϕ1∧ . . .
∧ϕn ⊃ ⊥ ∈ PC, hence, �Λ ϕ1∧ . . . ∧ϕn ⊃ ⊥, i.e., I is ∅incΛ.

Lemma A.6 Let S be any class of structures (frames or models) and suppose that for
every ∅cΛ-theory I, there is a S ∈ S, in which I is satisfiable. Then, Λ is strongly
complete with respect to the class of structures S. 4

Proof. The contrapositive will be proved. So, assume that Λ is not strongly complete
with respect to S, i.e. there are I ⊆ L�, ϕ ∈ L� s.t. I �S ϕ and I �Λ ϕ. Then, by
Lem.A.5(ii), I ∪{¬ϕ} is a ∅cΛ-theory. Furthermore, let S be any structure from S and
suppose, for the sake of contradiction, that there is a world w in S s.t. S, w � I∪{¬ϕ}.
Hence, S, w � ¬ϕ and S, w � I, but, since I �S ϕ, S, w � ϕ, which is a contradiction.
Consequently, in all structures of S, I ∪ {¬ϕ} is not satisfiable.

And now we come to the main results.

Theorem A.7 (Soundness)

(∀Γ ∪ {ϕ} ⊆ L�)(Γ �S5′
R
ϕ⇒ Γ �g

Uq
ϕ) 5

Proof. By Lem.A.2, it suffices to show (since the rest is nearly obvious) that T and
5� are valid in any q-frame F = 〈W,N,R〉 s.t. (∀w ∈ N) (∀v ∈ W )wRv. But, such a
frame is reflexiv in N and property (Eq) holds, so, by Prop.A.3, T and 5� are valid.

Proposition A.8 Let Λ be a consistent regular modal logic. If MΛ,∅ belongs to a class
S of structures, then Λ is strongly complete with respect to S.

Proof. By Lem.A.5(i), ∅ is cΛ, so, MΛ,∅ does exist. Let I be a ∅cΛ-theory. Then,
by Lindenbaum’s lemma, there is a m∅cΛ-theory Γ s.t. I ⊆ Γ. Hence, by Lem.3.8,
MΛ,∅, Γ � I, so, since MΛ,∅ belongs to S, by Lem.A.6, Λ is strongly complete with
respect to S.

4i.e. (∀I ⊆ L�)(∀ϕ ∈ L�)(I �S ϕ ⇒ I �Λ ϕ). I �S ϕ means local semantic consequence, i.e.
(∀M = 〈W,R, V 〉 ∈ S)(∀w ∈ W )(M, w � I ⇒ M, w � ϕ).

5If S is a class of frames, Γ �g
S ϕ means global semantic consequence, i.e. (∀F ∈ S)(F � Γ ⇒ F � ϕ).
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Theorem A.9 S5′
R is strongly complete with respect to all q-frames, for which (ERq)

holds.

Proof. By Prop.A.8, it suffices to show that (ERq) holds for canonical frame FS5′
R,∅.

Hence, by Prop.A.3 and Corol.A.4, it suffices to show that FS5′
R,∅ is reflexiv in NS5′

R,∅

and that property (Eq) holds for FS5′
R,∅. For simplicity, let us denote as F′ = 〈W ′, N ′, R′〉

the canonical frame FS5′
R,∅.

For reflexivity.
Let Γ be a m∅cS5′

R-theory and ϕ ∈ L� s.t. �ϕ ∈ Γ. But, ∅ �S5′
R

(T ), hence, by
Lem.3.3(iii), �ϕ ⊃ ϕ ∈ Γ, and, by Lem.3.3(i), ϕ ∈ Γ. So, by Def.3.6(iii), ΓR′

Γ.
For (Eq)
Let Γ,∆, Θ be m∅cS5′

R-theories s.t. �� ∈ Γ,∆ and ΓR′
∆, ΓR′

Θ. Let, furthermore, be
any ϕ ∈ L� s.t. �ϕ ∈ ∆. Suppose that �¬�ϕ ∈ Γ. Then, since ΓR′

∆, ¬�ϕ ∈ ∆,
which is a contradiction, since ∆ is, by Lem.A.5(iii), consistent. So, �¬�ϕ /∈ Γ, hence,
by Lem.3.3(ii), ¬�¬�ϕ ∈ Γ. But, by Lem.A.2, �S5′

R
(5′), hence, by Lem.3.3(iii),

�� ∧ ¬�¬�ϕ ⊃ �ϕ ∈ Γ. Furthermore, �� ∈ Γ, so, by Lem.3.3(i), �ϕ ∈ Γ. Finally,
since ΓR′

Θ, ϕ ∈ Θ. Hence, it has been proved that, if �ϕ ∈ ∆, then ϕ ∈ Θ, so, by
Def.3.6(iii), ∆R′

Θ.

The result in the previous theorem can be proved for another, simpler class of q-frames,
by introducing and using generated q-submodels. They are defined in the obvious way,
but by ommiting R-edges starting from impossible worlds.

Definition A.10 Let M = 〈W,N,R, V 〉, M′ = 〈W ′, N ′, R′, V ′〉 be two q-models. M′ is
called a generated q-submodel of M (in symbols: M′ � M) iff

• W ′ ⊆W

• N ′ = N ∩W ′

• R′ = R ∩ (N ′ ×W ′)

• (∀p ∈ Φ)V ′(p) = V (p) ∩W ′

• (∀w ∈ N ′)(∀v ∈ W )(wRv ⇒ v ∈W ′)

If D ⊆ W , then the smallest generated q-submodel of M containing D is called the
q-submodel of M generated by D.

The expected fact about modal satisfaction invariance under generated q-submodels,
can be easily proved.

Proposition A.11 If M′ � M, then

(∀ϕ ∈ L�)(∀w ∈W ′)(M, w � ϕ ⇐⇒ M′, w � ϕ)

Finally, using Theor.A.9 and Prop.A.11 one can prove the following result.
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Corollary A.12 (Completeness)
S5′

R is strongly complete with respect to all q-frames, for which (Uq) holds, i.e.

(∀Γ ∪ {ϕ} ⊆ L�)(Γ �Uq ϕ⇒ Γ �S5′
R
ϕ)

Proof. Firstly, let us denote as SU the class of all q-frames, for which (Uq) holds and
as SER the class of all q-frames, for which (ERq) holds. Now, let Γ ⊆ L� and ϕ ∈ L�

s.t. Γ �SU
ϕ. Furthermore, assume any F = 〈W,N,R〉 ∈ SER, any V : Φ → P(W ) and

any w ∈ W s.t. 〈F, V 〉, w � Γ. Let now M′ = 〈W ′, N ′, R′, V ′〉 be the q-submodel of
〈F, V 〉 generated by {w}. If w /∈ N , then, by Def.A.10, W ′ = {w} and N ′ = ∅, so,
〈W ′, N ′, R′〉 ∈ SU. If w ∈ N , then N ′ = [w]R and since M′ is the smallest q-submodel
containing {w}, (∀v ∈ W ′ \ N ′)(∃u ∈ N ′)uR′v. So again, since (ERq) holds for F,
〈W ′, N ′, R′〉 ∈ SU.
But, by Prop.A.11, M′, w � Γ. Hence, since 〈W ′, N ′, R′〉 ∈ SU and Γ �SU

ϕ, M′, w � ϕ.
Consequently, again by Prop.A.11, 〈F, V 〉, w � ϕ.
Hence, it has been proved that Γ �SER

ϕ. So, by Theor.A.9, Γ �S5′
R
ϕ.

Proof of Lemma A.1
Firstly, recall that regular modal logic is any set of formulae, containing all proposi-
tional tautologies (Taut) and axiom K (i.e. the formula �p ∧ �(p ⊃ q) ⊃ �q), and
which is closed under Modus Ponens (MP), uniform substitution (US) and rule RM.
Furthermore, given formulae (axioms) A1, . . . , An, the set

⋂
{Λ ⊆ L� | Λ : regular modal logic and A1, . . . , An ∈ Λ}

is the smallest regular modal logic containing A1, . . . , An, and it is denoted as KA1 . . .AnR.
Recall also, that �Λ ϕ means that there is a Hilbert-style proof, where each step of the
proof is either a member of US(K)∪US(A1)∪ . . .∪US(An)∪PC or a result of applying
MP or RM to formulae of previous steps and where the last formula in this proof is ϕ.

Now, let us define recursively the following sequence of sets

Λ0 = {K,A1, . . . , An} ∪ Taut
Λn+1 = Λn ∪ ΛMP

n+1 ∪ ΛUS
n+1 ∪ ΛRM

n+1 , where
ΛMP
n+1 = {ϕ ∈ L� | ψ, ψ ⊃ ϕ ∈ Λn},

ΛUS
n+1 = {ϕ[ϕ0/p0, . . . , ϕk/pk] ∈ L� |

ϕ ∈ Λn, k ∈ N, ϕ0, . . . , ϕk ∈ L�, p0, . . . , pk ∈ Φ},
ΛRM
n+1 = {�ϕ ⊃ �ψ ∈ L� | ϕ ⊃ ψ ∈ Λn} (n ∈ N)

and set Λ =
⋃
n∈N

Λn. Then it follows, by a trivial induction, that Λ ⊆ KA1 . . .AnR,
and by observing that Λ is a regular modal logic containingA1, . . . , An, that KA1 . . .AnR ⊆
Λ. Therefore, KA1 . . .AnR = Λ. Hence, to prove Lemma A.1, it suffices to show that

(∀ϕ ∈ L�)(ϕ ∈ Λ ⇐⇒ �Λ ϕ)

Proof. (⇒)
We will firstly show, by induction, that
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(∀k ∈ N)(∀ϕ ∈ L�)((ϕ ∈ Λk ∧ k = min{n ∈ N | ϕ ∈ Λn}) ⇒ �Λ ϕ) (∗)
Ind.Base is trivial, since ϕ ∈ Λ0 implies �Λ ϕ. Supposed the statement is true ∀i ≤ k,
we continue with Ind.Step. Let ϕ ∈ L� s.t. ϕ ∈ Λk+1 and (∀i ≤ k)ϕ /∈ Λi. Since ϕ /∈ Λk,
there are three cases left:

• If ϕ ∈ ΛMP
k+1, then ψ, ψ ⊃ ϕ ∈ Λk. Now, let us define i = min{n ∈ N | ψ ∈ Λn} and

j = min{n ∈ N | ψ ⊃ ϕ ∈ Λn}. Then, i, j ≤ k, hence by Ind.Hypothesis, �Λ ψ
and �Λ ψ ⊃ ϕ, hence, �Λ ϕ.

• If ϕ ∈ ΛRM
k+1 , then ϕ = �ψ ⊃ �χ and ψ ⊃ χ ∈ Λk. Now, let us define i =

min{n ∈ N | ψ ⊃ χ ∈ Λn}. Then, i ≤ k, hence, by Ind.Hypothesis, �Λ ψ ⊃ χ, so,
�Λ �ψ ⊃ �χ, i.e. �Λ ϕ.

• If ϕ ∈ ΛUS
k+1, then ϕ = ψ[ϕ0/p0, . . . , ϕn/pn], where ψ ∈ Λk (and ϕ0, . . . , ϕn ∈ L�,

p0, . . . , pn ∈ Φ). Let us define i = min{n ∈ N | ψ ∈ Λn}. Then, i ≤ k.

– If i = 0, then ψ ∈ Λ0, hence, ϕ ∈ US(K)∪US(A1)∪ . . .∪US(An)∪PC, so,
�Λ ϕ.

– If i > 0, then ψ /∈ Λi−1 and if, ad absurdum, ψ ∈ ΛUS
i , then ψ = χ[ψ0/q0, . . . ,

ψm/qm], where χ ∈ Λi−1 (and ψ0, . . . , ψm ∈ L�, q0, . . . , qm ∈ Φ). But then,
ϕ = χ[ϕ0/p0, . . . , ϕn/pn, ψ0/q0, . . . , ψm/qm], hence, ϕ ∈ ΛUS

i , i.e. ϕ ∈ Λi,
which is a contradiction, since i ≤ k. So, there are only two cases left:

∗ If ψ ∈ ΛMP
i , then χ, χ ⊃ ψ ∈ Λi−1, hence, χ[ϕ0/p0, . . . , ϕn/pn] ∈ ΛUS

i and
(χ ⊃ ψ)[ϕ0/p0, . . . , ϕn/pn] ∈ ΛUS

i , therefore, χ[ϕ0/p0, . . . , ϕn/pn] ∈ Λi

and (χ ⊃ ψ)[ϕ0/p0, . . . , ϕn/pn] ∈ Λi. Now, let s = min{n ∈ N | χ[ϕ0/p0,
. . . , ϕn/pn] ∈ Λn} and t = min{n ∈ N | (χ ⊃ ψ)[ϕ0/p0, . . . , ϕn/pn] ∈ Λn}.
Then, s, t ≤ i ≤ k, hence, by Ind.Hypothesis, �Λ χ[ϕ0/p0, . . . , ϕn/pn]
and �Λ (χ ⊃ ψ)[ϕ0/p0, . . . , ϕn/pn], therefore, since, (χ ⊃ ψ)[ϕ0/p0, . . . ,
ϕn/pn] = χ[ϕ0/p0, . . . , ϕn/pn] ⊃ ψ[ϕ0/p0, . . . , ϕn/pn], by MP,
�Λ ψ[ϕ0/p0, . . . , ϕn/pn], i.e. �Λ ϕ.

∗ If ψ ∈ ΛRM
i , then ψ = �χ0 ⊃ �χ1 and χ0 ⊃ χ1 ∈ Λi−1, hence, (χ0 ⊃

χ1)[ϕ0/p0, . . . , ϕn/pn] ∈ ΛUS
i , therefore, (χ0 ⊃ χ1)[ϕ0/p0, . . . , ϕn/pn] ∈

Λi. Now, let s = min{n ∈ N | (χ0 ⊃ χ1)[ϕ0/p0, . . . , ϕn/pn] ∈ Λn}. Then,
s ≤ i ≤ k, hence, by Ind.Hypothesis, �Λ (χ0 ⊃ χ1)[ϕ0/p0, . . . , ϕn/pn],
i.e. �Λ χ0[ϕ0/p0, . . . , ϕn/pn] ⊃ χ1[ϕ0/p0, . . . , ϕn/pn], therefore, by RM,
�Λ �χ0[ϕ0/p0, . . . , ϕn/pn] ⊃ �χ1[ϕ0/p0, . . . , ϕn/pn], so,
�Λ (�χ0 ⊃ �χ1)[ϕ0/p0, . . . , ϕn/pn], hence, �Λ ψ[ϕ0/p0, . . . , ϕn/pn], i.e.
�Λ ϕ.

The inductive proof of (∗) is complete. Assume now any ϕ ∈ Λ. Then, (∃n ∈ N)ϕ ∈ Λn

and for k = min{n ∈ N | ϕ ∈ Λn} result (∗) is applicable, hence, �Λ ϕ.
(⇐)
We will show, by induction on the length of proof, that

(∀k ∈ N)(∀ϕ ∈ L�)(�kΛ ϕ⇒ ϕ ∈ Λ)6 (�)

6�k
Λ means an RM-proof in Λ with at most k steps.
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For the Ind.Base, if �0
Λ ϕ, then ϕ ∈ US(K) ∪ US(A1) ∪ . . . ∪ US(An) ∪ PC, hence,

ϕ ∈ ΛUS
1 , i.e. ϕ ∈ Λ. For Ind.Step, let �k+1

Λ ϕ.

• If ϕ ∈ US(K)∪US(A1)∪ . . .∪US(An)∪PC, then exactly as in Ind.Base, ϕ ∈ Λ.

• If (k+1)-th step is an application of MP, then there are ψ, ψ ⊃ ϕ ∈ L� s.t. �kΛ ψ
and �kΛ ψ ⊃ ϕ, hence, by Ind.Hypothesis, ψ, ψ ⊃ ϕ ∈ Λ, so, since Λ is a modal
logic, ϕ ∈ Λ.

• If (k + 1)-th step is an application of RM, then ϕ = �ψ ⊃ �χ and �kΛ ψ ⊃ χ,
consequently, by Ind.Hypothesis, ψ ⊃ χ ∈ Λ, hence, since Λ is a regular modal
logic, �ψ ⊃ �χ ∈ Λ, i.e. ϕ ∈ Λ.

The inductive proof of (�) is complete. Now, for any ϕ ∈ L�, if �Λ ϕ, then there is a
k ∈ N s.t. �kΛ ϕ, hence, by (�), ϕ ∈ Λ.
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[MT93] V. W. Marek and M. Truszczyński. Non-Monotonic Logic: Context-
dependent Reasoning. Springer-Verlag, 1993.

[Seg71] K. Segerberg. An essay in Clasical Modal Logic. Filosofiska Studies, Uppsala,
1971.

[Sta93] R. Stalnaker. A note on non-monotonic modal logic. Artificial Intelligence,
64:183–196, 1993. Revised version of the unpublished note originally circu-
lated in 1980.

27


