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Abstract

We define and investigate a structure incorporating what is true, what is known
and what is believed by a rational agent in models of the S4.2 logic of knowledge.
The notion of KBR-structures introduced, provides a fine-grained modal analy-
sis of an agent’s epistemic state, actually one that differentiates knowledge from
belief and accounts for an agent without full introspective power (concerning her
knowledge sets). Many epistemic properties of this structure are proved and it is
shown that belief collapses in the form of a Stalnaker stable set (while knowledge
does not). Finally, a representation theorem is proved, which exactly matches
KBR-structures to S4.2 models of the world.



1 Introduction

Epistemic Logic [Hin62, Len79] has been concerned with the rigorous analysis of the
propositional attitudes ‘i knows ϕ’ and ‘i believes in ϕ’. It has grown as an area of
Philosophical Logic but it has been given a fresh, new perspective in Computer Science;
examples of applications abound: distributed systems [FHMV03], multi-agent systems
[Woo09] and many others. In its current form, Epistemic Logic has been greatly bene-
fited by the development of Modal Logic and, in particular, by the advent of ‘possible-
world ’ (or Kripke) semantics. Nowadays, many rich epistemic languages have been
introduced and applied in various fields of computing; see [Ben10] for a short presenta-
tion and many pointers to the literature, and also [DdHK07] for a compilation of various
concrete paradigms on the logics of knowledge and change.

Artificial Intelligence has provided a new, ‘introspective’ perspective on modal epis-
temic reasoning. In Knowledge Representation, the issue of a ‘good ’ representation
of a rational agent’s (typically acting in a domain of interest and holding partial, in-
complete information about the world) epistemic state is very important. A simple,
yet very successful and influential notion is Stalnaker’s definition of a stable belief set
([Sta93], [MT93]), which has played a significant role in the development of modal Non-
Monotonic Reasoning (NMR). Succint and expressive logical definitions of an agent’s
epistemic state are of interest to other branches of Knowledge Representation too, such
as belief revision and reasoning about actions.

In this paper we proceed to work on a detailed analysis of the epistemic and doxastic
theories held by a rational agent, operating in a complex possible-worlds environment,
under the realistic condition that the information acquired by the agent allows him to
distinguish (at least) some of the possible worlds in the picture. This is definitely differ-
ent from the S5 picture of the Stalnaker stable sets, worked around the universal model
paradigm, where no possible world is distinguishable for the others. Here, we actually
place the (important for KR) question of the formal representation of an agent’s knowl-
edge and belief, under the lens of classical modal epistemic reasoning and revisit the
notion of epistemic state(s) under a new, semantic perspective. Our objective is to
describe the epistemic and doxastic status of a rational agent without full in-
trospection (which has been strongly criticized in epistemic logic [Len79, p.35][GG06,
p.117]), taking a modal approach, which differentiates knowledge from belief.
We introduce a notion of KBR-structures, intending to capture the interplay between
truth, knowledge and belief held by an agent operating in a domain modelled as a set of
possible-worlds. We examine several proof-theoretic properties of KBR-structures and
provide a representation theorem for these structures, which proves an exact correspon-
dence to the models of S4.2, the logic advocated by W. Lenzen as the ‘correct ’ logic
of knowledge [Len79]. It is hardly surprising that the initial motivation of this research
has been the ambition to define simple variants of Stalnaker’s stable sets inspired from
interesting, existing models, such as the models of S4.2.
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2 Notation and Terminology

In this section we gather the necessary background material and results: for the ba-
sics of Modal Logic and modal Non-Monotonic Reasoning the reader is referred to the
books [BdRV01, Che80, HC96, MT93]. We assume a modal propositional language L�,
endowed with an epistemic operator �ϕ, read as ‘it is known that ϕ holds’. Sentence
symbols include � (for truth) and ⊥ (for falsity). Some of the important axioms in
epistemic/doxastic logic are:

K. (�ϕ ∧ �(ϕ ⊃ ψ)) ⊃ �ψ

T. �ϕ ⊃ ϕ (axiom of true, justified knowledge)

4. �ϕ ⊃ ��ϕ (axiom of positive introspection)

5. ¬�ϕ ⊃ �¬�ϕ (axiom of negative introspection)

G. ¬�¬�ϕ ⊃ �¬�¬ϕ
The epistemic interpretation of G will be made clear below. Modal logics are sets of
modal formulas containing classical propositional logic (i.e. containing all tautologies
in the augmented language L�) and closed under rule MP.ϕ,ϕ⊃ψ

ψ
. The smallest modal

logic is denoted as PC (propositional calculus in the augmented language). Normal
are called those modal logics, which contain all instances of axiom K and are closed
under rule RN. ϕ

�ϕ
. By KA1 . . .An we denote the normal modal logic axiomatized by

axioms A1 to An. Well-known epistemic logics comprise KT45 (S5) (a strong logic
of knowledge) and KT4G (S4.2). Throughout this paper we use the notion of strong
provability from a theory I. In the case of a normal modal logic Λ we write I �Λ ϕ
iff there is a Hilbert-style proof, where each step of the proof is a formula, which is a
tautology in L�, or an instance of K, or an instance of an axiom of Λ, or a member of I,
or a result of applying MP or RN to formulas of previous steps. We say that a theory
I is consistent with logic Λ (denoted as: cΛ) iff I �Λ ⊥. Theory Θ is I-consistent with
Λ (IcΛ) iff (∀n ∈ N)(∀ϕ0, . . . , ϕn ∈ Θ) I �Λ ϕ0 ∧ . . .∧ ϕn ⊃ ⊥, and theory Θ is maximal
I-consistent with Λ (mIcΛ) iff Θ is IcΛ and (∀ψ /∈ Θ) Θ ∪ {ψ} is not I-consistent with
Λ (IincΛ).

Furthermore, we say that I is closed under Λ-consequence iff I = CnΛ(I). By
definition, CnΛ(I) = {ϕ ∈ L� | I �Λ ϕ}. The notion of proof �Λ depends on Λ.
Except of modus ponens, in case of a normal modal logic Λ, it contains generalization.
If propositional logic PCL is considered, and I ⊆ L (as in Prop.4.3 later on), then
we say that I is closed under propositional consequence iff I = CnPCL(I). This time
CnPCL(I) =def. {ϕ ∈ L | I �PCL ϕ}, and proof �PCL contains only modus ponens.

Normal modal logics are interpreted over Kripke models: a Kripke model M =
〈W,R, V 〉 consists of a set of possible worlds (states, situations) W and a binary acces-
sibility relation between them R ⊆W ×W : whenever wRv, we say that world w ‘sees ’
world v, or that v is an alternative to w. The valuation V determines which proposi-
tional variables are true inside each possible world. Within a world w, the propositional
connectives (¬, ⊃, ∧, ∨) are interpreted classically, while �ϕ is true at w iff it is true
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in every world ‘seen’ by w (notation: M, w � �ϕ). The pair F = 〈W,R〉 is called the
frame underlying M. A logic Λ is determined by a class of frames iff it is sound and
complete with respect to this class; it is known that S5 is determined by the class of
frames with a universal accessibility relation, while S4.2 is determined by the class of
frames with a reflexive, transitive and directed1 accessibility relation [Gol92].

Regarding epistemic logic, our perspective is very much influenced by W. Lenzen’s
work in [Len79], where many interesting formulations of knowledge and belief are dis-
cussed. The language assumed is monomodal with an epistemic operator �; a belief
operator is defined by ¬�¬�ϕ. Given this, the interpretation of G becomes: ‘if some-
one believes that φ, then she does not disbelieve it ’. It is the principle of consistent
belief. We subsequently refer to some of the properties mentioned in [Len79], namely
¬�¬�ϕ ⊃ ¬�¬��ϕ (property B2.1) and ¬�¬�ϕ ⊃ �¬�¬�ϕ (properties B2.3 and
B2.4). In order to work with models of transitive logics, a cluster-based analysis is usu-
ally employed [Gol92, Chap.8][Seg71]. We provide the necessary definitions and results
below, with a bit of personal flavour in terminology.

Some useful facts. We will restrict ourselves to possible-worlds frames with a
reflexive, transitive and directed relation (henceforth called rtd-relation), keeping in
mind that in the class of reflexive and transitive frames, directedness is equivalent to
weak directedness2 [Gol92, p. 30]. The following definition for these relations, captures
the notion of cluster, as a maximal subset of states, inside which the (restriction of the)
accessibility relation is universal. Following this definition, we gather some properties
of clusters inside rtd-relations.

Definition 2.1 Let R ⊆W ×W be any (binary) rtd-relation on W , and ∅ 
= C ⊆W .

(i) C is called a cluster of R iff
(∀s, t ∈ C)sRt and (∀u ∈W \ C)(∃v ∈ C)(¬uRv or ¬vRu)

(ii) Cluster C of R is called final iff (∀u ∈W \ C)(∃v ∈ C) uRv

Fact 2.2

(i) (∀s ∈W )(∃C : cluster) s ∈ C

(ii) (∀ clusters C,C ′ ⊆ W ) C ∩ C ′ = ∅

(iii) (∀ clusters C,C ′ ⊆ W )(∀s ∈ C, s′ ∈ C ′)(sRs′ =⇒ (∀t ∈ C, t′ ∈ C ′) tRt′)

(iv) (∀ clusters C,C ′ ⊆ W )(∀s ∈ C, s′ ∈ C ′)(
(C 
= C ′ & sRs′) =⇒ (∀t ∈ C, t′ ∈ C ′) ¬t′Rt)

(v) There is a unique, final cluster.

1 i.e. (∀w, v ∈ W )(∃u ∈ W )(wRu & vRu).
2 i.e. (∀w, v, u ∈ W )

(
(wRv & wRu) ⇒ (∃t ∈ W )(vRt & uRt)

)
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It is customary to order clusters too, and we employ the following definition to make
this concrete. As we will prove, there is no loss of generality in ‘collapsing’ the clusters
bydefining a relation on the clusters’ indices and we will work for simplicity with frames
possessing a finite number of clusters (the indices will be members of D = {0, . . . , n}).
The lemma following the definition makes clear that the relation constructed inherits
properties from its ‘generator’ R.

Definition 2.3 Let R be an rtd-relation on W . Then, a pattern-relation Rp ⊆ D ×D
of R is any relation on D s.t. (∀i, j ∈ D)

iRpj ⇐⇒ (∃s ∈ Ci, t ∈ Cj) sRt

where C0, . . . , Cn ⊆W is an enumeration of the clusters of R.

Lemma 2.4 Let R be an rtd-relation on W and Rp a pattern-relation of R (for clusters
C0, . . . , Cn ⊆W ). Then,

(i) (∀i, j ∈ D)
(
iRpj ⇐⇒ (∀s ∈ Ci, t ∈ Cj) sRt

)

(ii) Rp is also an rtd-relation.

(iii) All clusters of Rp are singletons.

Proof. (i) It is immediate, by Def.2.3 and Fact 2.2(ii).
(ii) Follows easily by Def.2.3 and (i), since R is rtd.
(iii) First of all, in light of (ii), it is meaningful to refer to Rp-clusters, which contain
R-clusters. Suppose, for the sake of contradiction, that there is an Rp-cluster with more
than one elements. Let i, j be two of them. Since they belong to an Rp-cluster, by
Def.2.1(i), iRpj and jRpi, hence, by (i), (∀s ∈ Ci, t ∈ Cj) (sRt & tRs) (1)
But, by Fact 2.2(ii) (and since Cj 
= ∅), there exists a u ∈ Cj \Ci, hence, by Def.2.1(i),
there is a v ∈ Ci s.t. ¬uRv or ¬vRu, which contradicts to (1). And since clusters are
by definition non-empty, they are singletons.

The property (iii) entails another one, which is important for our next results, so we
will focus on rtd-relations endowed with (iii). These relations deserve a name.

Definition 2.5 Every binary relation which is reflexive, transitive, directed and has
only singleton clusters (i.e. every cluster consists of only one reflexive element) is called
a simple rtd-relation (s-rtd).

Lemma 2.6 Let R be an s-rtd-relation on W . Then, there is an f ∈W s.t.

(Gd) (∀i ∈ W )
(
iRf & (i 
= f ⇒ ¬fRi))

Proof. Let F ⊆ W be the final cluster, guaranteed by Fact 2.2(v), and i ∈ W . Since
every cluster is a singleton, let F = {f}. If i = f , then, since R is reflexive, iRf . If
i 
= f , then, i ∈W \ F , hence, by Def.2.1(ii), iRf and ¬fRi.

Following fact is now obvious.

Corollary 2.7 Let R be an rtd-relation on W and Rp a pattern relation of R (for
clusters C0, . . . , Cn ⊆ W ). Then, Rp is an s-rtd-relation and satisfies (Gd), where
W = D.
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3 KBR-structures

3.1 Motivation

Let us begin with an example, given in [Fit93]. Assume that we are interested in the
representation of knowledge (or ignorance) of an agent about the current raining condi-
tions in New York and in Novosibirsk. We need two propositional variables (e.g. y, n),
which represent “it’s raining in New York” and “it’s raining in Novosibirsk” respectively.
Then, there are four different situations, i.e. combinations of truthvalues of y and n.
Suppose that our agent resides in New York and knows whether it is raining there or
not. Assume that it is raining there. Then, she would consider both situations y, n and
y,¬n as two alternatives of the true state of the world. If she were in y, n, she could
not be able to distinguish her situation from y,¬n, and vice versa. And of course, y, n
itself is indistinguishable from y, n. In this case, since y is true in every alternative
situation for our agent (i.e. she knows y), �y is true in y, n and in y,¬n. Analogously,
if it isn’t raining in New York, situations ¬y, n and ¬y,¬n are not distinguishable to
eachother by our agent, and �¬y is true in both of them. This epistemical model could
be represented as in Figure 1, provided that arrows connect indistinguishable situations.

���
��

�

y, n

�y

�
��
��

�

��

¬y, n

�¬y

���
��
�

y,¬n

�y

�
��
��
���

¬y,¬n

�¬y

Figure 1:

This is the standard approach of an epistemical model, where the model is considered
to be symmetric, i.e. that all arrows are bidirectional. This means in our model, for
instance, that our agent’s ignorance about the weather conditions in Novosibirsk is
independent of what is really happening there, in other words, she knowns exactly the
same facts independently of where she is located, within the indistinguishable part of
the model. In a general case, the standard approach assumes that all indistinguishable
to eachother situations, “see” one another, which is a result of the assumption that the
information given to the agent is the same in all instinguishable situations.

We claim that this assumption is not always true. For example, in the previous
model one might think of a special case, where the havy rain in Novosibirsk was in the
news headlines, and our agent became aware of that. Then, assuming it isn’t raining

5



in New York, from ¬y, n, situation ¬y,¬n is distinguishable, whereas from ¬y,¬n,
situation ¬y, n isn’t, since we assume that in this case no comment about the (good)
weather in Novosibirsk was made by the news agencies, and our agent doesn’t know
what’s happening there.

Except of some special cases, which can not be covered by the assumption of uni-
form distribution of information within indistinguishable situations, there is another
drawback of the standard approache’s assumption and its entailment that all indistin-
guishable situations see eachother. Suppose that an agent, being in a situation (let us
name it) i, does not know ϕ. Then, there must be an indistinguishable from i situation
j, where ¬ϕ holds. Since every other indistinguishable from i situation k sees j, it will
also in k be true that our agent does not know ϕ (a witness for that is j). Hence, our
agent does know in i that she doesn’t know ϕ. So, within every situation, it does hold
that, if the agent does not know something, then she is aware of her ignorance about
that. And this fact, which is known as negative introspection, is not acceptable by the
vast majority of philosophers.

In our approach, trying to find a remedy for these drawbacks, we will assume that
information is not uniformly distributed all over the situations. We intend to
establish a formal representation of knowledge sets, which will not necessarily be the
same globally, but different for each situation (in fact, we will describe the properties of
those sets, not necessarily for each situation, but for ‘blocks’ of indistinguishable situ-
ations). So, assuming that there are n different situations, we denote for any situation
i ∈ {0, . . . , n} the agent’s knowledge set as Γi. To be able to define those sets,
we have to consider sets Ti, which will contain all true formulas in situation
i. Our agent does not necessarily know every formula in Ti; and anything believed by
her, might not be true. Furthermore, being in a situation i the agent might distinguish
between her current situation and another, because she has some information, which
allows her to do so. But she also might not distinguish between her current situation i
and another j. As explained previously, if j is an alternative situation for i, then it is
not necessarily true that i is an alternative situation for j, since being in j, our agent
might be provided with extra information, which might allow her to distinguish between
j and i.

Note also, that in the general case the agent does not necessarily know in
which situation she is located. If we know that the agent is in situation i and that,
say, j, k and l are alternative situations for i (i.e. indistinguishable from i), she might
not know that she is in i. She rather knows that i, j, k and l are all indistinguish-
able situations. Speaking about indistinguishable situations from i means that we do
know that if our agent were in i, she would consider these situations together with i
as alternative variations of her present, unknown to her! Furthermore, we could know
– since we enjoy the “eagle’s view” – that if our agent were in situation j, she
would have the information to distinguish between her situation and, say, k, but this
is something that she does not know. Only if she actually were in j she would know
that. Now, assume that in the previous example our agent is aware of the fact that in
all alternative situations (included the unknown to her, current situation i) a formula ϕ
is true (i.e. ϕ ∈ Ti ∩ Tj ∩ Tk ∩ Tl). Then, it is natural to say that she is sure about ϕ,
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that she knows ϕ. Therefore, given a relation R ⊆ {0, . . . , n}, representing all couples
of indistinguishable situations (i.e. iRj means that j is an alternative situation for i),
we will define in the next section, Γi as

⋂
iRj Tj .

As mentioned previously, in our modal language L� the modality denotes knowl-
edge. Hence, we have two ways of denoting knowledge of ϕ: using formula �ϕ, and
saying that ϕ ∈ Γi. To be consistent with our intuitions, we have to demand that

if ϕ ∈ Γi, then �ϕ ∈ Ti (3.0.i)

(i.e. if our agent knows ϕ, then, obviously, it is true that she does know it!), and

if ϕ /∈ Γi, then ¬�ϕ ∈ Ti (3.0.ii)

One might wonder why don’t we simply demand ϕ ∈ Γi iff �ϕ ∈ Ti. Then, ϕ /∈ Γi would
simply entail �ϕ /∈ Ti, which seams to be natural, since “it is not true that I know ϕ”
looks equivalent to “it is true that I do not know ϕ”! This equivalence is obviously true,
if we see each situation i as a unique state of affairs, as we did hitherto. But in a more
general case, we could consider bunches of situations (possibly, infinite many situations
in a bunch), where all situations of the same bunch are indistinguishable to eachother,
i.e. for every situation s of a bunch, any other of the same bunch, is an alternative one
for s. From now on we will call those bunches, clusters and we will denote them as i,
j, k etc. The situations itself will be denoted as s, t, u etc. We intend to define those
clusters in a such way, that if some situation s of a cluster i considers situation t of any
other cluster as an alternative one, then every other situation of i will consider t as an
alternative one. And if we say that ϕ is true in cluster i, obviously, we would like to
mean that ϕ is true in every situation of i, i.e. that Ti contains all formulas valid in
i. Hence, �ϕ /∈ Ti does not necessarily entail that ¬�ϕ ∈ Ti. But the inverse is true.
That’s why we chose the stronger property: ϕ /∈ Γi ⇒ ¬�ϕ ∈ Ti. Note also that now,
R does not anymore relate situations, rather than clusters, in the sense that iRj means
that our agent, being in any situation s of i considers as indistinguishable from s any
situation of j.

We will also adopt the option of defining belief through knowledge. To
do so, we will follow the idea introduced by W. Lenzen [Len79], who argued that the
following definition of belief is acceptable even by the ‘most scrupulous epistemologist ’:
an agent believes in ϕ iff she does not know that she doesn’t know ϕ (i.e.
¬�¬�ϕ defines ‘believing in ϕ’). Now, our agent knows that she doesn’t know ϕ iff
ϕ /∈ Γj for every alternative situation j for i, hence, she would believe in ϕ iff ϕ ∈ Γj for
some alternative situation j for i. Therefore – assuming that the belief sets, containing
everything believed by our agent in any situation of i, will be denoted as ∆i – it is
consistent with Lenzen’s definition to identify ∆i as

⋃
iRj Γj . As noted above, there

exists a direct way to speak about “believing” in ϕ: ¬�¬�ϕ. So, to be consistent with
our intuitions, we have to define the theories Ti and ∆i in such a way, that they will
satisfy the following conditions:

if ϕ ∈ ∆i, then ¬�¬�ϕ ∈ Ti (3.0.iii)
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(i.e. if our agent believes in ϕ, then, it is true that she does not know that she doesn’t
know it), and

if ϕ /∈ ∆i, then �¬�ϕ ∈ Ti (3.0.iv)

Let us now sum up, everything we have discussed so far. We began, considering
an agent, who might be in some situation, and who accepts as possible from there, all
other situations, which she can not distinguish. We presumed that there is a relation R
connecting those situations, in the sense that, sRt iff situation t is indistinguishable from
s. We decided that R should be reflexive, transitive and directed (rtd), and we saw that
in that case, there are clusters of situations, which (situations) are indistinguishable
from eachother. Then, by defining the pattern relation Rp of R, which connects all
clusters of R, we proved that it is an s-rtd-relation, i.e. rtd and, additionally, it has only
singleton-clusters, which entails that there is one “final” element (property (Gd)). So,
henceforth, we will focus on this pattern relation, which links clusters to eachother, and
everytime we mention R, we refer to the pattern relation, which is s-rtd.

We also declared that we want Ti to be the set of all valid formulas in all situations
of cluster i. We found out that Γi =

⋂
iRj Tj should be the set of all formulas known in

cluster i, and ∆i =
⋃
iRj Γj the set of all formulas believed there. We were interested

only to clusters, rather than to single situations, since in all situations of a cluster,
exactly the same formulas are known. This is immediate, since “know in a situation s”
means “true in all indistinguishable situations from s” and since every situation in a
cluster considers as indistinguishable exactly the same situations.

Hence, assuming that we were given an s-rtd-relation between clusters of situations,
we should describe all criteria, which the Ti’s should meet, so that intuitive properties
(3.0.i)–(3.0.iv) about knowledge and belief are true. This is exactly what we are going
to do in next section.

3.2 Definition of KBR-structures

Let us have in mind that D = {0, . . . , n} contains the (indices of the) clusters of the
epistemic situations considered, and that T0, . . . , Tn are the corresponding theories, con-
taining exactly all formulas, valid there. Firstly, we describe all those properties, which
these theories should satisfy, and we give the overall structure a name.

Definition 3.1 Let R ⊆ D × D be an s-rtd-relation on D and T0, . . . , Tn ⊆ L� be
consistent theories s.t. (∀i ∈ D)

(PCi) PCL�
⊆ Ti and Ti is closed under MP

(Pi) (∀ϕ ∈ L�)(ϕ ∈ ⋂
iRj Tj ⇒ �ϕ ∈ Ti)

(Ni) (∀ϕ ∈ L�)(ϕ /∈ Ti ⇒ ¬�ϕ ∈ ⋂
jRi Tj)

Furthermore, for any i ∈ D, we define Γi and ∆i as

Γi =
⋂

iRj

Tj and ∆i =
⋃

iRj

Γj
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Then, the ordered triple 〈(Ti), (Γi), (∆i)〉Ri∈D is called a KBR-structure. In fact, it is a
triple consisting of n-tuples of theories.

The following simple example demonstrates that Stalnaker stable sets correspond to a
trivial case of our setting, i.e. one that originates from a simple cluster.

Example 3.2 Consider D = {0}, a consistent theory T0 ⊆ L�, and the correspond-
ing KB{(0,0)}-structure 〈T0, Γ0,∆0〉{(0,0)} (for the trivial s-rtd-relation over D, {(0, 0)}).
Then, by Def.3.1, T0 satisfies: (∀ϕ ∈ L�)

(PC0) PCL�
⊆ T0 and T0 is closed under MP

(P0) ϕ ∈ T0 ⇒ �ϕ ∈ T0

(N0) ϕ /∈ T0 ⇒ ¬�ϕ ∈ T0

T0 is a stable set according to Stalnaker’s definition. Furthermore, Γ0 = ∆0 = T0.

Example 3.3 Let us consider now the s-rtd-relation R = {(0, 0), (1, 1), (1, 0)} and the
corresponding KBR-structure 〈(Ti), (Γi), (∆i)〉Ri∈D. Then, Def.3.1 says that T0 and T1

are meant to be consistent and to satisfy all conditions listed below: (∀ϕ ∈ L�)

(PC0,1) PCL�
⊆ T0, T1 and T0, T1 are closed under MP

(P0) ϕ ∈ T0 ⇒ �ϕ ∈ T0

(N0) ϕ /∈ T0 ⇒ ¬�ϕ ∈ T0 & ¬�ϕ ∈ T1

(P1) ϕ ∈ T0 & ϕ ∈ T1 ⇒ �ϕ ∈ T1

(N1) ϕ /∈ T1 ⇒ ¬�ϕ ∈ T1

Furthermore, Γ0 = T0, Γ1 = T0 ∩ T1, ∆0 = T0 and ∆1 = T0 ∪ (T0 ∩ T1) = T0. The
fact that ∆0 = ∆1 = T0 is not a coincidence, but a result of some properties, which are
satisfied by R, and which will be proved below (Fact 3.14).

The next Fact shows that everything in Def.3.1 is consistent with what we said in
section 3.1.

Fact 3.4 (∀i ∈ D)
(
(Pi) ⇐⇒ (3.0.i) & (Ni) ⇐⇒ (3.0.ii)

)

Definition 3.1 entails properties (3.0.iii), (3.0.iv) and (∀i ∈ D)(∀ϕ ∈ L�)

ϕ ∈ Γi ⇐⇒ �ϕ ∈ Ti and ϕ ∈ ∆i ⇐⇒ ¬�¬�ϕ ∈ Ti (3.4.v)
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Proof. The equivalence of (Pi) and (3.0.i) is immediate, by definition of Γi.

Next, assume that (∀i ∈ D)(Ni) holds and let ϕ /∈ Γi. Then, by definition of Γi,
there is a j ∈ D s.t. iRj and ϕ /∈ Tj , and by (Nj), ¬�ϕ ∈ Ti.
Conversely, assume that (∀i ∈ D) (3.0.ii) holds and let ϕ /∈ Ti and j ∈ D s.t. jRi.
Suppose for the sake of contradiction, that ϕ ∈ Γj . Then, by definition of Γj, ϕ ∈⋂
jRk Tk, and since jRi, ϕ ∈ Ti, which is a contradiction. Hence, ϕ /∈ Γj, so, by (3.0.ii),

¬�ϕ ∈ Tj . Therefore, ¬�ϕ ∈ ⋂
jRi Tj , and (Ni) is true.

For (3.0.iii), assume that ϕ ∈ ∆i. Then, by definition of ∆i, there is an i ∈ D s.t.
iRj and ϕ ∈ Γj. Hence, by (3.0.i), �ϕ ∈ Tj , and since Tj is consistent, ¬�ϕ /∈ Tj , so,
¬�ϕ /∈ ⋂

iRj Tj , therefore, by definition of Γi, ¬�ϕ /∈ Γi, and by (3.0.ii), ¬�¬�ϕ ∈ Ti.

For (3.0.iv), let ϕ /∈ ∆i. Then, by definition of ∆i, for all j ∈ D s.t. iRj, ϕ /∈ Γj,
hence, by (3.0.ii), (∀j ∈ D)(iRj ⇒ ¬�ϕ ∈ Tj), so, ¬�ϕ ∈ ⋂

iRj Tj, i.e., by definition of
Γi, ¬�ϕ ∈ Γi, and finally, by (3.0.i), �¬�ϕ ∈ Ti.

For (3.4.v), if ϕ /∈ Γi, then, by (3.0.ii), ¬�ϕ ∈ Ti, hence, since every Ti is consistent,
�ϕ /∈ Ti. Therefore, using also (3.0.i), ϕ ∈ Γi ⇔ �ϕ ∈ Ti.
Furthermore, if ϕ /∈ ∆i, then, by (3.0.iv), �¬�ϕ ∈ Ti, hence, since Ti is consistent,
¬�¬�ϕ /∈ Ti. So, by (3.0.iii), ϕ ∈ ∆i ⇔ ¬�¬�ϕ ∈ Ti.

3.3 Epistemic properties of KBR-structures

Even without any restrictions to R, Def.3.1 would endow all theories appearing there
with axiom K, as the first lemma verifies. Further on our discussion in the motivation
section, it would be desirable that the properties of R would lead to the incorpora-
tion of some intuitively acceptable properties of knowledge and belief in Γi and ∆i.
The lemmata which follow, state that reflexivity leads to two desirable properties:
the entailment thesis (knowledge implies belief) and the property requiring that
knowledge implies certainty.

Lemma 3.5 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ, ψ ∈ L�) K ∈ Ti

Proof. If ¬�ϕ ∈ Ti or ¬�(ϕ ⊃ ψ) ∈ Ti, then, by (PCi), K ∈ Ti.
If ¬�ϕ /∈ Ti and ¬�(ϕ ⊃ ψ) /∈ Ti, then, by (3.0.ii), ϕ ∈ Γi and ϕ ⊃ ψ ∈ Γi, hence, by
definition of Γi, ϕ ∈ ⋂

iRj Tj and ϕ ⊃ ψ ∈ ⋂
iRj Tj , so, by (PCj), ψ ∈ ⋂

iRj Tj, therefore,

by (Pi), �ψ ∈ Ti, and finally, by (PCi), again K ∈ Ti.

Lemma 3.6 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then, (∀i ∈ D)
Γi ⊆ Ti ∩ ∆i (i.e. everything our agent knows is true, and she believes in it).

Proof. Assume i ∈ D and ϕ ∈ Γi. By definition of Γi, ϕ ∈ ⋂
iRj Tj, and since iRi,

ϕ ∈ Ti. Furthermore, since iRi, ϕ ∈ ⋃
iRj Γj = ∆i.
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Lemma 3.7 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ ∈ L�) T ∈ Ti

Proof. If ¬�ϕ ∈ Ti, then, by (PCi), T ∈ Ti.
If ¬�ϕ /∈ Ti, then, by (3.0.ii), ϕ ∈ Γi, i.e. by definition of Γi, ϕ ∈ ⋂

iRj Tj , and since R

is reflexive, iRi, so, ϕ ∈ Ti, hence, by (PCi), again T ∈ Ti.

Not really surprisingly, transitivity entails positive introspection concerning knowl-
edge, as a context rule. Next, Lemma 3.8 along with the definition of ∆i entail Lemma
3.9.

Lemma 3.8 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then, (∀i ∈ D)

(PIi) (∀ϕ ∈ L�)(ϕ ∈ Γi ⇒ �ϕ ∈ Γi)

Proof. Suppose that ϕ ∈ Γi, i.e. by definition of Γi, ϕ ∈ ⋂
iRj Tj . Then,

(∀j ∈ D)(iRj ⇒ ϕ ∈ Tj) (∗)

Let now k ∈ D s.t. iRk, and l ∈ D s.t. kRl. Since R is transitive, iRl, so, by (∗),
ϕ ∈ Tl. Hence, ϕ ∈ ⋂

kRl Tl, subsequently, by (Pk), �ϕ ∈ Tk. Therefore, �ϕ ∈ ⋂
iRk Tk,

i.e. by definition of Γi, �ϕ ∈ Γi.

Lemma 3.9 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ ∈ L�)(ϕ ∈ ∆i ⇒ �ϕ ∈ ∆i)

Note that Lemma 3.9 in light of (3.4.v) (see section 3.1) shows that if our agent believes
in something, then she believes that she knows it (which is similar to Lenzen’s property
(B2.1) [Len79]). Transitivity of R is embedded in every theory of Def.3.1 through axiom
4. Finally, Lemma 3.11 is technically useful in the next section.

Lemma 3.10 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ ∈ L�) 4 ∈ Ti

Proof. If ¬�ϕ ∈ Ti, then, by (PCi), 4 ∈ Ti.
If ¬�ϕ /∈ Ti, then, by (3.0.ii), ϕ ∈ Γi, and by Lemma 3.8, �ϕ ∈ Γi, hence, by (3.0.i),
��ϕ ∈ Ti, so, by (PCi), again 4 ∈ Ti.

Following simple lemma will be useful in next section.

Lemma 3.11 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then, (∀i, j ∈ D)

iRj ⇒ Γi ⊆ Γj
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Proof. Let ϕ ∈ Γi and k ∈ D s.t. jRk. Then, since R is transitive, iRk, and by
definition of Γi, ϕ ∈ Tk, hence, by definition of Γj, ϕ ∈ Γj.

Finally, directedness of R leads to properties, similar to Lenzen’s (B2.3) and (B2.4)
[Len79, p.43-44]. The former one, which should be acceptable by a “realistic epistemolo-
gist”, says that if an agent believes in something, then she can not believe that
she doesn’t know it. The latter property, which should be acceptable – according to
Lenzen – by a “simplifier”, states that if an agent believes in something, then she
knows that she believes in it.

Lemma 3.12 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then,
(∀i ∈ D)(∀ϕ ∈ L�)

(B2.3) ϕ ∈ ∆i ⇒ ¬�ϕ /∈ ∆i and (B2.4) ϕ ∈ ∆i ⇒ ¬�¬�ϕ ∈ Γi

Proof. Since both implications have the same premise, we start proving both of them,
assuming that ϕ ∈ ∆i. Then, by definition of ∆i, there is a j ∈ D s.t. iRj and ϕ ∈ Γj.
Let now l ∈ D s.t. iRl. Then, since R is weakly directed 3, there must be an m ∈ D s.t.
jRm and lRm. Furthermore, assume that s ∈ D be s.t. mRs. Since jRm and since
R is transitive, jRs, hence, since ϕ ∈ Γj =

⋂
jRk Tk, ϕ ∈ Ts. So, ϕ ∈ ⋂

mRs Ts, and by
(Pm), �ϕ ∈ Tm, and since Tm is consistent, ¬�ϕ /∈ Tm.

For (B2.3). It has been proved so far, that there is an m ∈ D s.t. lRm and ¬�ϕ /∈
Tm. Consequently, by definition of Γl, ¬�ϕ /∈ Γl, hence, (∀l ∈ D)(iRl ⇒ ¬�ϕ /∈ Γl), so,
by definition of ∆i, ¬�ϕ /∈ ∆i.

For (B2.4). Since ¬�ϕ /∈ Tm and since lRm, by (Nm), ¬�¬�ϕ ∈ Tl, hence,
¬�¬�ϕ ∈ ⋂

iRl Tl, and by definition of Γi, ¬�¬�ϕ ∈ Γi.

Now, let us focus on the last presumption for R: being a simple rtd-relation. Then,
by Lemma 2.6, property (Gd) is true for R. Without loss of generality, we will tacitly
assume that the ‘final ’ element of R is 0, i.e. that (Gd) appears in the following form:

(Gd) (∀i ∈ D) (iR0 & (i > 0 ⇒ ¬0Ri))

This property endows every theory of Def.3.1 with axiom G and leads to the next two
results.

Lemma 3.13 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀ϕ ∈ L�) G ∈ Ti

Proof. If �¬�ϕ ∈ Ti, then, by (PCi), G ∈ Ti.
If �¬�ϕ /∈ Ti, then, by (Pi), there is a j ∈ D s.t. iRj and ¬�ϕ /∈ Tj , hence, since (by
(Gd)) jR0, by (N0), ϕ ∈ T0, therefore, because T0 is consistent, ¬ϕ /∈ T0, and by (N0),
¬�¬ϕ ∈ ⋂

jR0 Tj , so, by (Gd), (∀j ∈ D)¬�¬ϕ ∈ Tj , hence of course, ¬�¬ϕ ∈ ⋂
iRj Tj,

and by (Pi), �¬�¬ϕ ∈ Ti, consequently, by (PCi), again G ∈ Ti.

3 As we have said in section 2, since R is reflexive and transitive, being directed is equivalent to
being weakly directed.
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Fact 3.14 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then, (∀i ∈ D)

(i) ∆i = Γ0 = T0

(ii) ∆i is a stable theory according to Stalnaker’s definition

Proof. (i) Suppose that ϕ ∈ ∆i. Then, by definition of ∆i, there is a j ∈ D s.t. iRj
and ϕ ∈ Γj, hence, by definition of Γj, ϕ ∈ ⋂

jRk Tk, and since – by (Gd) – jR0, ϕ ∈ T0.
Conversely, assume that ϕ ∈ T0. But, by definition of Γ0 and (Gd), Γ0 =

⋂
0Rj Tj = T0,

hence, ϕ ∈ Γ0. But, again by (Gd), iR0, hence, ϕ ∈ ⋃
iRj Γj, so, by definition of ∆i,

ϕ ∈ ∆i.
It has been proved that ∆i = T0, but also that Γ0 = T0.
(ii) (PC0), (P0) and (N0) guarantee that T0 is Stalnaker stable. Then, so is every ∆i,
by (i).

Now, it is immediate that our belief sets follow the principle of consistency of belief,
i.e. that if an agent believes in ϕ, she can not believe in ¬ϕ.

Lemma 3.15 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then,
(∀i ∈ D)(∀ϕ ∈ L�)

ϕ ∈ ∆i ⇒ ¬ϕ /∈ ∆i

Proof. If ϕ ∈ ∆i, then, by Fact 3.14, ϕ ∈ T0, hence, by consistency of T0, ¬ϕ /∈ T0,
and again by Fact 3.14, ¬ϕ /∈ ∆i.

All previous lemmata seem to justify the choice of the KBR notion in Def.3.1: KBR-
structures contain K(nowledge) theories (the Γi’s), and B(elief) theories (the ∆i’s). Ac-
cording to Fact 3.14, one of the Γi’s coincides with everything believed in any situation.
Without loss of generality, it is assumed that this one is Γ0. In following section we will
present a model-theoretic characterization of KBR-structures. To do so, we need the
next important result, in which we employ a notion of strong provability.

Lemma 3.16 If 〈(Ti), (Γi), (∆i)〉Ri∈D is any KBR-structure, then, (∀i ∈ D)

(i) Γi is closed under strong S4.2 provability, i.e. Γi = {ϕ ∈ L� | Γi �S4.2 ϕ}.
(ii) Γi is a consistent with S4.2 theory (cS4.2-theory).

Proof. (i) It is obvious that, if ϕ ∈ Γi, then Γi �S4.2 ϕ. Conversely, suppose that
Γi �S4.2 ϕ. It will be proved, by induction on the length of Γi �S4.2 ϕ, that ϕ ∈ Γi.
Ind.Basis. For length of proof equal to 1. Let j ∈ D be s.t. iRj.
If ϕ ∈ PCL�

, then, by (PCj), ϕ ∈ Tj . If ϕ is an instance of K or T or 4 or G, then, by
Lemmata 3.5, 3.7, 3.10 and 3.13 respectively, ϕ ∈ Tj . Hence, in any case ϕ ∈ Tj , and
since iRj, by definition of Γi, ϕ ∈ Γi.
Ind.Step. If ψ and ψ ⊃ ϕ are formulas of the proof in previous steps, then, by
Ind.Hypothesis, ψ ∈ Γi and ψ ⊃ ϕ ∈ Γi, i.e. (∀j ∈ D)(iRj ⇒ (ψ ∈ Tj & ψ ⊃ ϕ ∈ Tj),
and so, by (PCj), ϕ ∈ Tj, hence, by definition of Γi, ϕ ∈ Γi.
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If ϕ = �ψ and ψ is a formula of the proof in a previous step, then, by Ind.Hypothesis,
ψ ∈ Γi and so, by (PIi) (Lemma 3.8), �ψ ∈ Γi.
(ii)
Suppose, for the sake of contradiction, that Γi was an incS4.2-theory. Then Γi �S4.2 ⊥,
hence, by (i), ⊥ ∈ Γi, i.e. by definition of Γi and (Gd), ⊥ ∈ T0, hence, T0 is inconsistent,
which is a contradiction, by Def.3.1.

4 S4.2 representation of KBR-structures

First of all, let us define next theories.

Definition 4.1 Assume any Kripke model M = 〈W,R, V 〉 and any C ⊆W . Then,

ThM(C) =def {ϕ ∈ L� | (∀w ∈ C) M, w � ϕ}

KM(C) =def {ϕ ∈ L� | (∀w ∈ C) M, w � �ϕ}
BM(C) =def {ϕ ∈ L� | (∀w ∈ C) M, w � ¬�¬�ϕ}

Intuitively, ThM(C) is the theory containing formulas, which are true in every situ-
ation of C, KM(C) is everything our agent knows in every situation of C, and BM(C)
is everything she believes in, in every situation of C. Our first result states that in the
case of an epistemic S4.2-model, everything she knows and everything she
believes in, can be captured syntactically by the notion of KBR-structures.
Furthermore, everything she believes in, is the same in all clusters, and coin-
cides with everything she knows in the final cluster. For an example, see section
5.

Theorem 4.2 Let M = 〈W,R, V 〉 be any S4.2-model with clusters Ci ⊆ W (i ∈
D), where C0 is the final cluster. Then, there is a relation P ⊆ D × D such that
〈(ThM(Ci)), (KM(Ci)), (BM(Ci))〉Pi∈D is a KBP -structure and BM(Ci) = KM(C0).

Proof. According to Def.3.1 we should:
(a) prove that all ThM(Ci) are consistent theories, and
(b) find a simple, reflexive, transitive and directed relation P ⊆ D ×D s.t. (∀i ∈ D)
(c) KM(Ci) =

⋂
iP j Tj and (PCi), (Pi) and (Ni) hold for ThM(Ci).

As far as the BM(Ci)’s is concerned, by Fact 3.14, it suffices to prove that (∀i ∈ D)
(d) BM(Ci) =

⋃
iP jKM(Cj).

Here are the proofs of (a) to (d).
(a) For convenience, let us denote each ThM(Ci) as Ti. Obviously, Ti 
= ∅ and ϕ ∈
Ti ⇒ ¬ϕ /∈ Ti, so they are consistent.
(b) Since R is rtd, by Def.2.3, it is meaningful to refer to its pattern-relations. So, let
P ⊆ D ×D be a pattern-relation of R (for clusters C0, . . . , Cn), i.e.

iP j
def⇐⇒ (∃w ∈ Ci)(∃v ∈ Cj) wRv
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Then, by Corollary 2.7, P is an s-rtd-relation.
(c) By Def.4.1, we have to show that for any i ∈ D,ϕ ∈ L�

(∀w ∈ Ci) M, w � �ϕ ⇐⇒ (∀j ∈ D)(iP j ⇒ (∀v ∈ Cj) M, v � ϕ)

For (⇒), consider any j ∈ D s.t. iP j and any v ∈ Cj. Then, assuming any w ∈ Ci, by
Lemma 2.4(i), wRv, hence, by premise, M, v � ϕ. For (⇐), take any w ∈ Ci and any
v ∈ W s.t. wRv. Then, since

⋃
j∈D Cj = W , there is a j ∈ D s.t. v ∈ Cj , hence, by

definition of P , iP j, so, by premise, M, v � ϕ, therefore, M, w � �ϕ.
(PCi) This propery is obvious, since all formulas of PCL�

are valid in every Kripke
model, and since closure of Ti under MP is actually the definition of truth of ϕ ⊃ ψ in
a Kripke model.
(Pi) Assume that ϕ ∈ ⋂

iP j Tj i.e. ∀j ∈ D s.t. iP j, (∀w ∈ Cj) M, w � ϕ. Let w ∈ Ci
and v ∈ W s.t. wRv. Then, there is a j ∈ D s.t. v ∈ Cj, so, by definition of P , iP j,
hence, by assumption, M, v � ϕ, consequently, M, w � �ϕ, so �ϕ ∈ Ti.
(Ni) Suppose that ϕ /∈ Ti i.e. there exists a w ∈ Ci s.t. M, w � ¬ϕ. Let j ∈ D be s.t.
jP i and v ∈ Cj . Then, by Lemma 2.4(i), vRw, hence, since M, w � ¬ϕ, M, v � ¬�ϕ,
so, ¬�ϕ ∈ Tj , and ¬�ϕ ∈ ⋂

jP i Tj .
(d) By Def.4.1, it suffices to show that for any i ∈ D,ϕ ∈ L�

(∀w ∈ Ci) M, w � ¬�¬�ϕ ⇐⇒ (∃j ∈ D)(iP j & (∀v ∈ Cj) M, v � �ϕ)

For (⇒), after considering any w ∈ Ci, using the premise, it must be a u ∈W s.t. wRu
and M, u � �ϕ. Since

⋃
j∈D Cj = W , there is a j ∈ D s.t. u ∈ Cj , hence, by definition

of P , iP j. Furthermore, consider any v ∈ Cj . Since Cj is a cluster, uRv. Finally, let
s ∈ W s.t. vRs. R is transitive, so uRs, hence (because M, u � �ϕ) M, s � ϕ i.e.
M, v � �ϕ.
For (⇐), consider any w ∈ Ci and any v ∈ Cj , where j is the integer, whose existence
is guaranteed by the premise. Then, M, v � �ϕ and, since iP j, by Lemma 2.4(i), wRv,
hence, M, w � ¬�¬�ϕ.

Similarly to parts (a), (b) and (c) of the proof of Theorem 4.2 one can prove that,
having fixed modal-free, consistent and closed under propositional consequence theories
S0, . . . , Sn and an s-rtd-relation P , we can find aKBP -structure 〈(Ti), (Γi), (∆i)〉Pi∈D such
that the non-modal part of the theories T0, . . . , Tn, is exactly S0, . . . , Sn respectively.

Proposition 4.3 Let S0, . . . , Sn ⊆ L be modal-free, consistent and closed under propo-
sitional consequence theories, and P ⊆ D × D an s-rtd-relation. Then, there exists a
KBP -structure 〈(Ti), (Γi), (∆i)〉Pi∈D s.t. Ti ∩ L = Si (i ∈ D).

Proof. Consider the model M = 〈W,R, V 〉, where

• W =
⋃
i∈D Ci, where

Ci = {(i, w) ∈ D × (Φ �→ {t, f}) | (∀ϕ ∈ Si) w(ϕ) = t} (i ∈ D)

• R =
⋃
iP j Ci × Cj
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• V (p) =
⋃
i∈D{(i, w) ∈ Ci | w(p) = t} (p ∈ Φ)

Every Ci consists of all (indexed by i) propositional valuations which satisfy Si (note
that Φ is the set of all propositional variables and (Φ �→ {t, f}) is the set of all functions
from Φ to {t, f}). Let us now fix any i ∈ D. First of all, let us point out that the
notion w(ϕ) is meaningful, since Si ⊆ L, and so, ϕ ∈ L. Furthermore, Ci 
= ∅, since
Si is consistent, and hence, by the completeness Theorem for propositional logic, Si is
satisfiable. Next, using the definitions of V and of propositional valuations, by a trivial
induction on the complexity of ϕ, we can prove that, (∀(i, w) ∈W )(∀ϕ ∈ L)

M, (i, w) � ϕ ⇐⇒ w(ϕ) = t (4.3.i)

Now, consider any ϕ ∈ Si. Then, by the definition of Ci, (∀(i, w) ∈ Ci) w(ϕ) = t, so, by
(4.3.i), since ϕ ∈ L, (∀(i, w) ∈ Ci) M, (i, w) � ϕ, hence, ϕ ∈ ThM(Ci), and of course,
ϕ ∈ ThM(Ci) ∩ L.
Conversely, let ϕ ∈ ThM(Ci) ∩ L. Then, (∀(i, w) ∈ Ci) M, (i, w) � ϕ, consequently, by
(4.3.i), since ϕ ∈ L, (∀(i, w) ∈ Ci) w(ϕ) = t, so, by the definition of Ci, Si � ϕ, hence,
by the completeness Theorem for propositional logic, Si �PC ϕ, and since Si is closed
under propositional consequence, ϕ ∈ S.
Hence, the assertion will follow for theories ThM(Ci), by proving additionally that
〈(ThM(Ci)), (Γi), (∆i)〉Ri∈D is a KBP -structure. But, by the construction of R, since
P is rtd, so is R. Then, it is meaningful to refer to its pattern-relations. Let us
focus on P . Firstly, P is a binary relation on D. Next, for any i, j ∈ D, assume
that iP j. Then, by definition of R, (∀(i, w) ∈ Ci, (j, v) ∈ Cj) (i, w)R(j, v), and
since Ci, Cj 
= ∅, (∃(i, w) ∈ Ci, (j, v) ∈ Cj) (i, w)R(j, v). Conversely, suppose that
(∃(i, w) ∈ Ci, (j, v) ∈ Cj) (i, w)R(j, v). Then, by definition of R, there must be i′, j′ ∈ D
and Ci′, Cj′ s.t. i′Pj′ and (i, w) ∈ Ci′, (j, v) ∈ Cj′. But then, by the definition of the
Ci’s, i

′ = i and j′ = j, hence, iP j. Furthermore, by construction of R, all Ci (i ∈ D)
are clusters of R. Hence, all this shows, by Def.2.3, that P is a pattern-relation of R
(for clusters C0, . . . , Cn). Now, we continue our proof exactly as in parts (a), (b) and
(c) (only for (PCi), (Pi) and (Ni)) of the proof of Theorem 4.2, and we conclude that
〈(ThM(Ci)), (Γi), (∆i)〉Ri∈D is a KBP -structure.

As an application of Proposition 4.3, let us consider again s-rtd-relation R of example
3.3. Furthermore, consider p ∈ Φ, S0 = CnPCL({p}) and S1 = CnPCL(∅). It is
easy to see that S0 = CnPCL(S0) and S1 = CnPCL(S1). Clearly, both are satisfiable,
hence, by the soundness theorem for propositional logic, they are consistent. So, by
Proposition 4.3, there is a KBR-structure 〈(T0, T1), (Γ0, Γ1), (∆0,∆1)〉R s.t. T0 ∩L = S0

and T1 ∩ L = S1. Hence, p ∈ T0 and p /∈ T1 (for otherwise, p ∈ S1, so �PCL p, hence p
would be a tautology, which is absurd). Then, since p /∈ T1, by definition of Γ1, p /∈ Γ1.
But, p ∈ T0, hence, by (P0), �p ∈ T0, and since T0 is consistent, ¬�p /∈ T0, so, ¬�p /∈ Γ1.
Therefore, p /∈ Γ1 � ¬�p ∈ Γ1. This counterexample verifies the next lemma, which is
most welcomed.

Lemma 4.4 There are KBR-structures, whose knowledge-part (some Γi’s) does not sat-
isfy the negative introspection property concerning knowledge.
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Our next goal is to prove the converse of Theorem 4.2, i.e. for a givenKBR-structure,
there is an epistemical S4.2-model, in which everything an agent knows and believes in,
is described by the KBR-structure given, and furthermore, everything she believes in,
is described by one of the knowledge-theories in structure KBR. The model, which we
are searching for, will be a construction similar to the well known canonical model for a
modal logic, and it will be based on the normal modal logic S4.2, which we will denote
as Λ.

Definition 4.5 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. The canonical model
for it, is Kripke model Mc = 〈W c, Rc, V c〉, where

(i) W c =
⋃
i∈DW

c
i , where W c

i = {(i, Θ) ∈ D ×P(L�) | Θ : mΓicΛ} (i ∈ D)

(ii)
(∀(i, Θ), (j, Z) ∈W c

)(
(i, Θ)Rc(j, Z) ⇐⇒
(iRj & (∀ϕ ∈ L�)(�ϕ ∈ Θ ⇒ ϕ ∈ Z))

)

(iii) (∀p ∈ Φ)(V c(p) = {(i, Θ) ∈W c | p ∈ Θ})

Next, we present some lemmata, useful in our main theorem. The first two are
presented without proofs, since they are classic.

Lemma 4.6 Let Λ be any normal modal logic, I a cΛ-theory, Θ a mIcΛ-theory and
ϕ, ψ L�-formulae. Then,

(i) Θ is closed under MP

(ii) either ϕ ∈ Θ or ¬ϕ ∈ Θ

(iii) I �Λ ϕ ⇐⇒ (∀Z : mIcΛ)ϕ ∈ Z

(iv) ϕ ∧ ψ ∈ Θ ⇐⇒ (ϕ ∈ Θ and ψ ∈ Θ)

Lemma 4.7 (Lindenbaum) Let Λ be any normal modal logic, I a cΛ-theory and T
an IcΛ-theory. Then, there is a mIcΛ theory Θ s.t. T ⊆ Θ.

Remark 4.8 Firstly, notice that W c is the disjoint union of all mΓicΛ theories with
indexes in D. Furthermore, by Lemma 3.16(ii), every Γi (i ∈ D) is cΛ, hence, to refer
to mΓicΛ-theories is meaningful, and Γi �Λ ⊥, so, {�} is ΓicΛ, and by Lindenbaum’s
Lemma, there exists a mΓicΛ-theory (which, by the way, contains {�}), therefore, every
W c
i 
= ∅ (i ∈ D).

Lemma 4.9 (Truth Lemma) (∀ϕ ∈ L�)(∀(i, Θ) ∈ W c)(Mc, (i, Θ) � ϕ⇔ ϕ ∈ Θ)

Proof. By induction on the complexity of ϕ. Induction basis follows immediately
from Def.4.5(iii). In induction step, the first part, concerning ϕ ⊃ ψ, follows trivially
from induction hypothesis using (i) to (iv) of Lemma 4.6. Now, to the second part of
induction step, the �ϕ case:
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Mc, (i, Θ) � �ϕ iff (∀(j, Z) ∈ W c)((i, Θ)Rc(j, Z) ⇒ Mc, (j, Z) � ϕ) iff (by Ind.Hyp.)
(∀(j, Z) ∈ W c)((i, Θ)Rc(j, Z) ⇒ ϕ ∈ Z). It suffices to show that this is equivalent to the
fact that �ϕ ∈ Θ.
(⇒)
Suppose that �ϕ /∈ Θ. Notice that, since (i, Θ) ∈ W c, Θ is mΓicΛ. Now, let us define
H = {ψ ∈ L� | �ψ ∈ Θ} and I = {¬ϕ} ∪ H. Suppose, for the sake of contradiction, that
I was ΓiincΛ i.e. there exist ψ1, . . . , ψn ∈ I s.t. Γi �Λ ψ1 ∧ . . . ∧ ψn ⊃ ⊥.

• if n = 1 and ψ1 = ¬ϕ i.e. Γi �Λ ϕ, then, by (RN), Γi �Λ �ϕ, hence, since Θ is
mΓicΛ, by Lemma 4.6(iii), �ϕ ∈ Θ, which is a contradiction.

• if ψ1, . . . , ψn ∈ H, then Γi �Λ ψ1 ∧ . . . ∧ ψn ⊃ φ, since ⊥ ⊃ ϕ ∈ PC.
if n > 1 and ψ1, . . . , ψn−1 ∈ H and ψn = ¬ϕ, then Γi �Λ ψ1 ∧ . . . ∧ ψn−1 ⊃ φ.
So, in both cases, there are ψ1, . . . , ψn ∈ H with n ≥ 1 s.t. Γi �Λ ψ1 ∧ . . .∧ψn ⊃ ϕ.
Hence, by RN and using K (and by a trivial induction), Γi �Λ �ψ1 ∧ . . .∧�ψn ⊃
�ϕ, so, by Lemma 4.6(iii), �ψ1 ∧ . . .∧�ψn ⊃ �ϕ ∈ Θ. But, since ψ1, . . . , ψn ∈ H,
by definition, �ψ1, . . . ,�ψn ∈ Θ, therefore, by Lemma 4.6(iv),(i), �ϕ ∈ Θ, which
is again a contradiction.

So, I is a ΓicΛ-theory, and by Lindenbaum’s lemma, there is a mΓicΛ-theory Z s.t.
I ⊆ Z, hence, ¬ϕ ∈ Z, which entails, by Lemma 4.6(ii), that ϕ /∈ Z.
Furthermore, since R is reflexive, iRi, and (∀ψ ∈ L�), if �ψ ∈ Θ, then, by definition,
ψ ∈ H, hence, ψ ∈ I, so, ψ ∈ Z. Therefore, by Def.4.5(ii), (i, Θ)Rc(i, Z).
(⇐)
Suppose that �ϕ ∈ Θ and let (j, Z) ∈ W c be s.t. (i, Θ)Rc(j, Z). Then, by Def.4.5(ii),
ϕ ∈ Z.

Lemma 4.10 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure, and Mc its canonical model.
Then, (∀i ∈ D)(∀ϕ ∈ L�)

Γi �Λ ϕ ⇐⇒ (∀(i, Θ) ∈W c
i ) Mc, (i, Θ) � �ϕ

Proof. For (⇒), assume that Γi �Λ ϕ. Then, by (RN), Γi �Λ �ϕ, hence, by Lemma
4.6(iii), (∀Θ : mΓicΛ) �ϕ ∈ Θ, so, by Truth Lemma, (∀(i, Θ) ∈W c

i ) Mc, (i, Θ) � �ϕ.
For (⇐), suppose that Γi �Λ ϕ and, for the sake of contradiction, that {¬�ϕ} was
ΓiincΛ. Then, Γi �Λ �ϕ, hence, since T ∈ Λ, Γi �Λ ϕ, which is a contradiction. So,
{¬�ϕ} is ΓicΛ, therefore, by Lindenbaum’s Lemma, there is a Θ : mΓicΛ, i.e. a pair
(i, Θ) ∈W c

i s.t. ¬�ϕ ∈ Θ, hence, by Truth Lemma, Mc, (i, Θ) � �ϕ.

Now, we are ready to prove a representation theorem for KBR-structures.

Theorem 4.11 Let 〈(Ti), (Γi), (∆i)〉Ri∈D be any KBR-structure. Then, there exists an
S4.2-model M = 〈W,R, V 〉 and Ci ⊆ W s.t. (∀i ∈ D)

Γi = KM(Ci) ∆i = BM(Ci) = Γ0
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Proof. Consider the canonical model Mc for KBR-structure 〈(Ti), (Γi), (∆i)〉Ri∈D and
set Ci =def W

c
i . First of all, we will check whether Mc is indeed an S4.2-model.

For reflexivity, fix any i ∈ D and consider any (i, Θ) ∈W c
i and a ϕ ∈ L� s.t. �ϕ ∈ Θ.

Then, since Γi �Λ T and since Θ is mΓicΛ, by Lemma 4.6(iii), T ∈ Θ, hence, by Lemma
4.6(i), ϕ ∈ Θ. Furthermore, since R is reflexive, iRi, hence, by Def.4.5(ii), (i, Θ)Rc(i, Θ).

For transitivity, let (i, Θ) ∈W c
i , (j, Z) ∈ W c

j and (k, H) ∈W c
k be s.t. (i, Θ)Rc(j, Z) and

(j, Z)Rc(k, H). Furthermore, consider any ϕ ∈ L� s.t. �ϕ ∈ Θ. Then, since Γi �Λ 4 and
since Θ is mΓicΛ, by Lemma 4.6(iii), 4 ∈ Θ, hence, by Lemma 4.6(i), ��ϕ ∈ Θ, so, since
(i, Θ)Rc(j, Z), �ϕ ∈ Z, and since (j, Z)Rc(k, H), ϕ ∈ H. Furthermore, since R is transitive
and since iRj and jRk, iRk. Hence, by Def.4.5(ii), (i, Θ)Rc(k, H).

For directedness, we will firstly prove that

(∀(i, Θ) ∈W c
i )(∀(0, H) ∈W c

0 ) (i, Θ)Rc(0, H) (4.11.i)

Let ϕ ∈ L� be s.t. �ϕ ∈ Θ. Suppose, for the sake of contradiction, that ¬�ϕ ∈
Γi. Then, Γi �Λ ¬�ϕ, hence (since Θ is mΓicΛ), by Lemma 4.6(iii), ¬�ϕ ∈ Θ, so, Θ

would be inconsistent, and hence, ΓiincΛ, which is a contradiction. So, ¬�ϕ /∈ Γi, i.e.
by definition of Γi, there is a k ∈ D s.t. iRk and ¬�ϕ /∈ Tk. But then, by (2) of
Fact 3.4, ϕ ∈ Γk. Furthermore, by (Gd), kR0, hence, by Lemma 3.11, Γk ⊆ Γ0, so,
ϕ ∈ Γ0, consequently, Γ0 �Λ ϕ, and since H is mΓ0cΛ, by Lemma 4.6(iii), ϕ ∈ H. It
has been proved that, if �ϕ ∈ Θ, then ϕ ∈ H. Additionally, iR0, hence, by Def.4.5(ii),
(i, Θ)Rc(0, H). So, (4.11.i) has been proved.

Now, consider any (i, Θ) ∈ W c
i , (j, Z) ∈ W c

j and fix a (0, H) ∈ W c
0 . Then, by (4.11.i),

(i, Θ)Rc(0, H) and (j, Z)Rc(0, H), which entails directedness of Mc.

We come now to theories of Knowledge KMc . By Lemma 3.16(i), ϕ ∈ Γi iff Γi �Λ ϕ.
Furthermore, Γi �Λ ϕ iff, by Lemma 4.10, (∀(i, Θ) ∈ Ci) Mc, (i, Θ) � �ϕ iff, by Def.4.1,
ϕ ∈ KMc(Ci). Hence,

Γi = KMc(Ci) (4.11.ii)

Finally, we will focus on theories of Belief BMc . Consider any ϕ ∈ BMc(Ci). Then,
(∀(i, Θ) ∈ W c

i ) Mc, (i, Θ) � ¬�¬�ϕ, i.e. there exists a (j, Z) ∈W c
j s.t. (i, Θ)Rc(j, Z) and

Mc, (j, Z) � �ϕ. Now, assume that (0, H) ∈ W c
0 and let (k, H′) ∈ W c

k s.t. (0, H)Rc(k, H′),
i.e. by Def.4.5(ii), 0Rk, hence, by (Gd), k = 0. This means that (k, H′) = (0, H′) ∈ W c

0 .
But then, by (4.11.i), (j, Z)Rc(0, H′). So, and since Mc, (j, Z) � �ϕ, it is true that
Mc, (k, H′) � ϕ, hence, Mc, (0, H) � �ϕ, consequently, (∀(0, H) ∈ W c

0 ) Mc, (0, H) � �ϕ,
which entails, by Def.4.1, ϕ ∈ KMc(W c

0 ), and by (4.11.ii), ϕ ∈ Γ0.
Conversely, suppose that ϕ ∈ Γ0, i.e. again by (4.11.ii), ϕ ∈ KMc(W c

0 ). Consider
any (i, Θ) ∈ W c

i . Then, by (4.11.i), there is a (0, H) ∈ W c
0 s.t. (i, Θ)Rc(0, H) (in fact,

it is true for all elements of W c
0 , which is, by Remark 4.8, non-empty). Hence, since

ϕ ∈ KMc(W c
0 ), by Def.4.1, Mc, (0, H) � �ϕ, so, Mc, (i, Θ) � ¬�¬�ϕ, i.e. by Def.4.1,

ϕ ∈ BMc(Ci). Therefore, proof of BMc(Ci) = Γ0 (i ∈ D) is complete. And of course, by
Fact 3.14(i), ∆i = Γ0 (i ∈ D).
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5 A detailed example

We will present an epistemic model example, where an agent (A) is provided with infor-
mation, which depends on the current agent’s situation. Suppose that (A) is interested
in the current raining conditions in Stockholm, Athens and Paris, and tries to get some
information from a friend of hers, which is a meteorologist (M). The source of informa-
tion for (A) is only (M). We assume that (M) responds to (A)’s struggle for information
very reluctantly, as follows.

1. If it is raining only in Athens, then (M) tells (A) that “It’s raining in Stockholm
or in Athens”.

2. If it is raining in Stockholm and not in all three cities, then (M) says “It’s raining
in Stockholm or in two cities overall”.

3. If it isn’t raining in Stockholm nor in Athens, then (M) says “It isn’t raining in
Stockholm nor in Athens, or it is raining in Athens and Paris”.

4. If it is raining in Athens and Paris, then (M) is very talkative this time and
announces “It’s raining in Athens and Paris”!

Assuming a language with only three propositional variables, namely s, a and p
(corresponding to the facts that it is raining in Stockholm, Athens or Paris, respectively),
and considering the assertions above, we can construct the epistemic model shown in
Figure 2 on page 21. This is a typical S4.2-model with clusters C0 to C3. C0 is the
final cluster. Since each Ti contains all formulas true (everywhere) in Ci, and taking
in account the assertions 1 to 4 (in this order), we conclude that ¬s ∧ a ∧ ¬p ∈ T3,
s ∧ ¬(a ∧ p) ∈ T2, ¬s ∧ ¬a ∈ T1, and a ∧ p ∈ T0.

Now, Theorem 4.2 and Definition 3.1 state that everything that is true (Ti) in each
cluster satisfies following properties (the s-rtd-relation on D = {0, 1, 2, 3} guaranteed by
Theor.4.2 is P = {(0, 0), (1, 1), (1, 0), (2, 2), (2, 0), (3, 3), (3, 2), (3, 0)}):
(PC0,1,2,3) PCL�

⊆ T0, T1, T2, T3 and T0, T1, T2, T3 are closed under MP

(P0) ϕ ∈ T0 ⇒ �ϕ ∈ T0

(N0) ϕ /∈ T0 ⇒ ¬�ϕ ∈ T0 & ¬�ϕ ∈ T1 & ¬�ϕ ∈ T2 & ¬�ϕ ∈ T3

(P1) ϕ ∈ T0 & ϕ ∈ T1 ⇒ �ϕ ∈ T1

(N1) ϕ /∈ T1 ⇒ ¬�ϕ ∈ T1

(P2) ϕ ∈ T0 & ϕ ∈ T2 ⇒ �ϕ ∈ T2

(N2) ϕ /∈ T2 ⇒ ¬�ϕ ∈ T2 & ¬�ϕ ∈ T3

(P3) ϕ ∈ T0 & ϕ ∈ T2 & ϕ ∈ T3 ⇒ �ϕ ∈ T3

(N3) ϕ /∈ T3 ⇒ ¬�ϕ ∈ T3
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Figure 2:

Furthermore, Theorem 4.2 and Definition 3.1 say that everything an agent knows (Γi)
in a cluster Ci is exactly: Γ0 = T0, Γ1 = T0 ∩ T1, Γ2 = T0 ∩ T2, and Γ3 = T0 ∩ T2 ∩ T3,
and everything she believes in, in any situation is the same and builds set T0.

Now, taking in account properties above, some examples follow, of what our agent
knows and believes in, in this epistemic model.

• Since each Ti is closed under propositional consequence ((PC0) to (PC3)),

s ∨ a ∈ T3, T2, T0

s ∨ (a ∧ p) ∈ T2, T0

(¬s ∧ ¬a) ∨ (a ∧ p) ∈ T1, T0

a ∧ p ∈ T0

Hence, s ∨ a ∈ Γ3, s ∨ (a ∧ p) ∈ Γ2, (¬s ∧ ¬a) ∨ (a ∧ p) ∈ Γ1, and a ∧ p ∈ Γ0.

• If it is raining only in Athens, our agent is in C3, and since ¬s ∧ a ∧ ¬p ∈ T3, by
(PC3), ¬p ∈ T3, hence, since T3 is consistent, p /∈ T3, therefore, a ∧ p /∈ T3, and by
definition of Γ3, a∧ p /∈ Γ3, i.e. she is not sure that it is raining in Athens and Paris
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(which is good, since it isn’t true!). But, by definition of ∆3, since a ∧ p ∈ Γ0 and
(3, 0) ∈ P , a ∧ p ∈ ∆3, i.e. she believes that it is raining in Athens and Paris.

• In the same situation as above, ¬s ∧ a ∧ ¬p /∈ Γ3 (since one can easily see that
¬s∧a∧¬p /∈ T0, and (3, 0) ∈ P ), i.e. our agent doesn’t know that it is raining only in
Athens; she doesn’t know in which situation she is located. Furthermore, since
¬s∧ a∧¬p /∈ T0 and (3, 0), (2, 0), (0, 0) ∈ P , by (N0), ¬�(¬s∧ a∧¬p) ∈ T0 ∩T2 ∩T3,
hence, ¬�(¬s ∧ a ∧ ¬p) ∈ Γ3, i.e. she is aware of her ignorance about the fact
that it is raining only in Athens.

• By construction of this model, it is not necessarily true that it is raining in Athens in
every situation of C2, i.e. a /∈ T2, hence, since (3, 2) ∈ P , a /∈ Γ3, which means that in
the situation of C3 our agent does not know that it is raining in Athens, although
it is true. Furthermore, a ∈ T0, so, by (P0), �a ∈ T0, hence, ¬�a /∈ T0, and since
(3, 0) ∈ P , ¬�a /∈ Γ3, i.e. our agent does not know that she doesn’t know that
it is raining in Athens; she believes she might know it! (this is also verified by the fact
that �a ∈ T0 = Γ0 = ∆3). So, in this case our agent is not negative-introspective.

• In any situation of C2, since s ∧ ¬(a ∧ p) ∈ T2, a ∧ p /∈ T2, hence, a ∧ p /∈ Γ2, i.e.
she doesn’t know that it is raining in Athens and Paris, which is rather expectable,
since this fact is simply false in every situation of C2. But, a ∧ p ∈ T0, so, by (P0),
�(a∧ p) ∈ T0, therefore, ¬�(a∧ p) /∈ T0, and since (2, 0) ∈ P , ¬�(a∧ p) /∈ Γ2, hence,
she does not know that she doesn’t know this fact. And, �(a ∧ p) ∈ T0 = Γ0 =
∆2, hence, she believes (falsely) that she knows that it is raining in both cities. This
time, our agent is again not negative-introspective, but in a more ‘severe’ situation,
since she believes that she knows something, which is wrong.

6 Related Work - Further Research

The identification of logical theories, which capture the epistemic content of a rational
agent’s view of the world, is a very important topic in Knowledge Representation. A very
important notion has been the notion of a stable belief set, introduced by R.Stalnaker
[Sta93] and further investigated in modal non-monotonic reasoning [MT93]. The original
motivation of this paper (rather distinctly far from the final result) has been the idea
to derive logically interesting notions of stable epistemic states out of a model-theoretic
starting point, and prove that they posses intuitive syntactic characterizations. This
seems natural to do: stable belief sets can be represented as S5 theories or sets of beliefs
held inside a KD45 situation [Hal97],[MT93]. In a previous paper [KZ10] we obtained
interesting syntactic variations of epistemic states and proved representation theorems,
in terms of possible-world models for non-normal modal logics. It (still) seems natural
to investigate the other way around: to define epistemic theories in terms of possible
worlds models for interesting epistemic logics (such as S4.2,S4.4), and then match
this definitions to closure under intuitive context-rules, such as the ones encountered
in Stalnaker’s initial definition. On the way, it became clear to us that, from a purely
epistemological viewpoint that takes into account the information available to the agent
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inside each situation, the S5-like analysis of epistemic reasoning is too simple to furnish a
realistic view (although there exists a compensation, in terms of various handy technical
properties). Thus, we took a step back to start from the very beginning: the notion of
accessibility between possible worlds, its epistemic content and logical interpretations.
This led us to the semantic analysis discussed in section 3.1 and to the origination of
KBR-structures.

The KBR-structures introduced here represent a somewhat complex yet interesting
description of the epistemic status of a rational (but not fully introspective) agent,
allowing a differentiation of knowledge from belief. It would be interesting to embed
them in core KR techniques, such as default reasoning or belief revision; actually it is
a very challenging (albeit complex) task to define reasoning procedures that will take
into account the subtle differences between knowledge and belief. Such a task is bound
to be complex but it will be necessarily useful to deviate from the currently dominating
model of a logically omniscient, fully introspective agent. As a more short-term goal,
it is definitely interesting to identify the computational complexity of reasoning with
KBR-structures.
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[JN10] Tomi Janhunen and Ilkka Niemelä, editors. Logics in Artificial Intelligence
- 12th European Conference, JELIA 2010, Helsinki, Finland, September 13-
15, 2010. Proceedings, volume 6341 of Lecture Notes in Computer Science.
Springer, 2010.

[KZ10] Costas D. Koutras and Yorgos Zikos. Stable belief sets revisited. In Janhunen
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